

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

CONTENTS

	SALIENT FEATURE	I-VI
	EXECUTIVE SUMMARY	I-XXXVIII
CHAPTER 1	INTRODUCTION	1-16
CHAPTER 2	TRAFFIC DEMAND FORECAST	1-53
CHAPTER 3	SYSTEM SELECTION	1-19
CHAPTER 4	GEOMETRIC DESIGNING PARAMETERS & ALIGNMENT DESCRIPTION	1-15
CHAPTER 5	CIVIL ENGINEERING	1-56
CHAPTER 6	STATION PLANNING	1-48
CHAPTER 7	TRAIN OPERATION PLAN	1-19
CHAPTER 8	ROLLING STOCK	1-13
CHAPTER 9	POWER SUPPLY, SYSTEM OF TRACTION AND POWER TARIFF	1-11
CHAPTER 10	MAINTENANCE DEPOTS	1-29
CHAPTER 11	SIGNALLING SYSTEM	1-6
CHAPTER 12	TELECOMMUNICATION & AUTOMATIC FARE COLLECTION	1-10
CHAPTER 13	DISABLED FRIENDLY FEATURES	1-23
CHAPTER 14	ENVIRONMENTAL IMPACT ASSESSMENT	1-52
CHAPTER 15	SECURITY MEASURES FOR A METRO SYSTEM	1-5
CHAPTER 16	DISASTER MANAGEMENT PLAN FOR A METRO RAIL SYSTEM	1-7
CHAPTER 17	MULTI MODAL TRANSPORT INTEGRATION	1-7
CHAPTER 18	COST ESTIMATES	1-12
CHAPTER 19	FINANCING OPTIONS, FARE STRUCTURE AND FINANCIAL VIABILITY	1-13
CHAPTER-20	ECONOMIC APPRAISAL	1-10
CHAPTER-21	IMPLEMENTATION STRATEGY	1-10
CHAPTER-22	CONCLUSION APPROVAL BY GOVT OF MAHARASHTRA WITH SPV MODAL	1-4

SALIENT FEATURE

- 1. GAUGE
- 2. DESIGN SPEED
- 3. ROUTE LENGTH
- 4. NUMBER OF STATIONS
- 5. TRAFFIC FORECAST RIDERSHIP
- 6. TRAIN OPERATION
- 7. TRACTION POWER SUPPLY
- 8. ROLLING STOCK
- 9. MAINTENANCE FACILITIES
- 10. SIGNALLING, TELECOMMUNICATION & TRAIN CONTROL
- 11. FARE COLLECTION
- 12. CONSTRUCTION METHODOLOGY
- 13. PROJECT COST
- 14. FINANCIAL INDICES

SALIENT FEATURES

1.	GAUGE (STANDARD)	-	1435 mm
2.	MAX. PERMISSIBLE SPEED	_	80kmph

3. ROUTE LENGTH (END TO END OF STATION)

Description	Elevated (km)	At Grade (km)	Total (km)
Line 1 – North-South Corridor : Automative Square to MIHAN	15.058	4.600	19.658
Line 2 – East West Corridor : Prajapati Nagar to Lokmanya Nagar	18.557	000	18.557
Tota	33.615	4.600	38.215

4. NUMBER OF STATIONS

Description	Elevated	At Grade
Line 1 – North-South Corridor :	15	2
Automative Square to MIHAN	10	2
Line 2 – East West Corridor :	19	0
Prajapati Nagar to Lokmanya Nagar	19	0
Total	34	2

5. TRAFFIC FORECAST – RIDERSHIP

BOARDING/RIDERSHIP (DAY)	2016	2021	2026	2031	2036	2041
ON LINE 1(AUTOMATIVE- KHAPRI)	168361	185531	203720	224316	248419	277704
ON LINE 2(PRAJAPATI- LOKMANYA)	184081	197908	215415	234577	260237	286031
TOTAL OF BOTH	352442	383439	419135	458893	508656	563735
AVERAGE TRIP LENGTH IN KM	6.419	6.453	6.494	6.533	6.521	6.522
MAXIMUM PHPDT ON LINE 1	10089	10936	11915	12934	14286	15729
MAXIMUM PHPDT ON LINE 2	7746	8460	9154	9906	10748	11882

6. TRAIN OPERATION

A) TRAIN FREQUENCY

	20	16	20	21	20	26	20	31	20	36	20	41
Sections	Peak Hour h/w	Lean Hour h/w										
Automotive Sqre to Congress Nagar Section	6 min	10 to 30 min	5 min	8 to 20 min	4.5m in	6 to 20 min	4 min	6 to 20 min	3.5 min	5 to 15 min	3 min	5 to 15 min
Congress Nagar to Khapri Station Section	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min	6 min	10 to 30 min

Line-1: North – South Corridor

	20	16	20	21	20	26	20	31	20	36	20	41
Sections	Peak Hour h/w	Lean Hour h/w										
Prajapati Nagar to Agrasen Chowk Section	13 min	20 to 60 min	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min
Agrasen Chowk to Subhash Nagar Section	6.5 min	10 to 30 min	6 min	10 to 30 min	5 min	8 to 20 min	4.5 min	6 to 20 min	4 min	6 to 20 min	3.5 min	5 to 15 min
Subhash Nagar to Lokmanya Nagar Section	13 min	20 to 60 min	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min

B) RAKE REQUIREMENT

Corridor	Year	No. of Rakes	Rake Consist	No. of cars
	2016	11	3 car	33
North – South Corridor	2021	12	3 car	39
	2031	16	3 car	51
	2041	20	3 car	63
	2016	12	3 car	36
East – West Corridor	2021	13	3 car	39
Last - West Corridor	2031	17	3 car	51
	2041	20	3 car	60

7. TRACTION POWER SUPPLY

- a) Voltage
- b) Current Collection
- c) SCADA system

25 KV AC

Overhead Current Collection System

Provided

POWER DEMAND (MVA)

Power Demand Estimation (MVA)

	Year				
Corridor	2016	2021	2031	2041	
North-South Corridor – 1	Traction	4.32	5.01	5.84	7.16
Automotive Sqre to Depot Station.	Auxiliary	7.72	7.84	9.14	11.49
[21.833 kms ; 16 elevated Stations &1 U/G Station].	Total	12.04	12.85	14.98	18.65
East-West Corridor – 2	Traction	4.24	4.57	5.73	7.01
Prajapati Nagar to Lokmanya Nagar [18,266 kms ; 19	Auxiliary	8.34	8.46	9.88	12.48
Elevated Stations].	Total	12.58	13.03	15.61	19.49

8. ROLLING STOCK

i. Coach Size

Particular	Length*	Width	Height
Driving Motor Car (DMC)	21.64 m	2.9 m	3.9 m
Trailer Car (TC)/Motor Car (MC)	21.34 m	2.9 m	3.9m

*Maximum length of coach over couplers/buffers: 22.6 m (depending upon Kinematic Envelop)

- ii. Train Composition 3- Car train: DMC+TC+ DMC
- iii. Seating Arrangement Longitudinal
- iv. Passenger Carrying Capacity (Crush @ 6 person/sq. m)

PARTICULAR	SEATED	SEATED STANDING	
DMC	43	204	247
тс/мс	50	220	270
3-CAR	136	628	764

۷.	Axle load:	16T
vi.	Max Acceleration:	1.0 m/s2
vii.	Max Deceleration:	1.0 m/s2 (Normal Brake) > 1.3 m/s2 (Emergency Brake)
viii.	Maximum Design Speed:	95 kmph
ix.	Maximum Operating Speed:	85 kmph
х.	Schedule Speed (as per train operation in	n following lines):
	a. Corridor I : North-South Corridor:	32-34 kmph
	b. Corridor II : East- West Corridor:	30 kmph

9. MAINTENANCE FACILITIES

Depot- cum- workshop near Khapri Station (MADC Land) and near Lokmanya Nagar Station (SRP Land)

10. SIGNALLING, TELECOMMUNICATION & TRAIN CONTROL

a)	Type of Signaling	Cab signaling and continuous automatic train control with Automatic Train Protection (ATP)
b)	Telecommunication	i) Integrated System with Fibre Optic cable,

SCADA, Train Radio, PA system etc.ii) Train information system, Control telephones and Centralized Clock System.

11. FARE COLLECTION Automatic Fare collection system with POM and Smart card etc.

12. CONSTRUCTION METHODOLOGY

i. Viaduct: Pre-stressed concrete "Box" shaped Girders/Double U-Girder on Single pier with pile / Open foundations.

v/vi

13. PROJECT COST

Total Estimated/Completion Cost

	(Rs./Crore)				
Corridor No	Name of Corridor	Distance (KMs)	Estimated Cost without Central taxes at June-2012 Price Level	Estimated Cost with Central taxes at June-2012 Price Level	Completion Cost
I	North-South Corridor	19.658	3015.00	3,435.00	8680
II	East-West Corridor	18.557	2984.00	3,427.00	0000
	Total	38.215	5999.00	6862.00	

14. FINANCIAL INDICES

i.	FIRR: (Cost with central taxes)	10.35 %
----	---------------------------------	---------

ii. EIRR: 17.70 %

EXECUTIVE SUMMARY

• •	
0.1	INTRODUCTION
0.2	TRAFFIC DEMAND
0.3	SYSTEM SELECTION
0.4	GEOMETRIC DESIGN NORMS
0.5	CIVIL ENGINEERING
0.6	STATION PLANNING
0.7	TRAIN OPERATION PLAN
0.8	ROLLING STOCK
0.9	POWER SUPPLY, SYSTEM OF TRACTION AND POWER TARIFF
0.10	MAINTENANCE DEPOT
0.11	SIGNALLING SYSTEM
0.12	TELECOMMUNICATION & AUTOMATIC FARE COLLECTION
0.13	DISABLED FRIENDLY FEATURES
0.14	ENVIRONMENTAL IMPACT ASSESSMENT
0.15	SECURITY MEASURES FOR A METRO SYSTEM
0.16	DISASTER MANAGEMENT PLAN FOR A METRO RAIL SYSTEM
0.17	MULTI MODAL TRANSPORT INTEGRATION
0.18	COST ESTIMATES
0.19	FINANCING OPTIONS, FARE STRUCTURE AND FINANCIAL VIABILITY
0.20	ECONOMIC ANALYSIS
0.21	IMPLEMENTATION STRATEGY AND PROJECT IMPLEMENTATION
0.22	CONCLUSIONS AND RECOMMENDATIONS
TABLES	CONCLUSIONS AND RECOMMENDATIONS
TABLE 0.1A	ALIGNMENTS PROPOSED BY DMRC
TABLE 0.18	FINAL ALIGNMENTS
TABLE 0.10	SUMMARY OUTPUT : TRAFFIC
TABLE 0.2	HORIZONTAL CURVE PARAMETERS
TABLE 0.3	SUMMARY OF BORE HOLES : NS CORRIDOR
TABLE 0.4	SUMMARY OF BORE HOLES : EW CORRIDOR
	RCC PILE FOUNDATION DETAILS ; NS CORRIDOR
TABLE 0.6	
TABLE 0.7	OPEN FOUNDATION DETAILS : NS CORRIDOR
TABLE 0.8	RCC PILE FOUNDATION DETAILS ; EW CORRIDOR
TABLE 0.9	OPEN FOUNDATION DETAILS : EW CORRIDOR
TABLE 0.10	SUMMARY OF PERMANENT LAND REQUIREMENT
TABLE 0.11A	NS CORRIDOR :SEQUENCE OF STATIONS WITH CHAINAGES AND LOCATIONAL & PLATFORM CHARACTERISTICS
TABLE 0.11B	EW CORRIDOR :SEQUENCE OF STATIONS WITH CHAINAGES AND LOCATIONAL & PLATFORM CHARACTERISTICS
TABLE 0.12	PHPDT CAPACITY PROVIDED
TABLE 0.13	YEAR WISE RAKE REQUIREMENT
TABLE 0.14	SIZE OF THE COACH
TABLE 0.15	CARRYING CAPACITY OF MEDIUM RAIL VEHICLES
TABLE 0.16	POWER DEMAND ESTIMATION (MVA)
TABLE 0.17	STANDARDS OF SIGNALLING SYSTEM
TABLE 0.18	TECHNOLOGIES PROPOSED FOR TELECOMMUNICATION SYSTEMS
TABLE 0.19	TECHNOLOGIES PROPOSED FOR AFC SYSTEMS
TABLE 0.20	COMPLETION COST
TABLE 0.21	FUNDING PATTERN UNDER SPV MODEL
TABLE 0.22	FUNDING PATTERN UNDER BOT MODEL (WITH CENTRAL TAXES)
TABLE 0.23	YEAR WISE INVESTMENT-WITH CENTRAL TAXES
TABLE 0.24	BENEFIT COMPONENTS DUE TO METRO
FIGURES	
FIG-0.1	KEY PLAN OF NAGPUR METRO

EXECUTIVE SUMMARY

0.1 INTRODUCTION

0.1.1 General

Nagpur is the third largest city of Maharashtra and also the winter capital of the state. With a population of approximately 25 lakhs. Nagpur Metropolitan Area is the 13th largest urban conglomeration in India. It has also recently been ranked as the cleanest city and the second greenest city of India. In addition to being the seat of annual winter session of Maharashtra state assembly "Vidhan Sabha", Nagpur is also a major commercial and political center of the Vidarbha region, It is also known as "Orange City" for being a major trade center of oranges that are cultivated in the region.

Nagpur lies precisely at the center of the country with the Zero Mile Marker indicating the geographical center of India. The city was founded by the Gonds but later became part of the Maratha Empire under the Bhonsles. The British East India Company took over Nagpur in the 19th century and made it the capital of the Central Provinces and Berar. After the first reorganisation of states, the city lost its capital status but according to the informal "Nagpur Pact" between political leaders, it was made the second capital of Maharashtra. **Nagpur** is also declared, "Tiger Capital of India " as it connects many Tiger Reserves in India to the world.

Nagpur lies on the Deccan plateau of the Indian Peninsula and has a mean altitude of 310 meters above sea level. The underlying rock strata are covered with alluvial deposits resulting from the flood plain of the Kanhan River. In some places these give rise to granular sandy soil. In low lying areas which are poorly drained, the soil is alluvial clay with poor permeability characteristics. In the eastern part of city crystalline metamorphic rocks such as gneiss, schist and granites are found, while in the northern part yellowish sand stones and clays of the lower Gondwana formations are found.

Nagpur city is dotted with natural and man-made lakes with Ambazari lake being the largest. Other natural lakes include Gorewada Lake and Telangkhedi lake. Sonegaon lake and Gandhisagar lake are man-made lakes created by the city's historical rulers. Nag river, Pilli nadi along with nallas form the natural drainage pattern for the city. Nagpur is known for its greenery, and was judged as the cleanest and second greenest in India. Recently, Government of India selected Nagpur as a Model City for *National Clean Air Mission* by allocating 25 crores for the plan. This project will be handled by Nagpur's own NEERI.

As it is located at centre of Indian peninsula far from the Bay of Bengal and the Arabian Sea, Nagpur has a tropical wet and dry climate with dry conditions prevailing for most of the year. It receives an annual rainfall of 1,205 mm (47.44 in) from monsoon rains during June to September. The highest recorded rainfall was 304 mm on 14 July 1994. Summers are extremely hot lasting from March to June, with maximum temperatures occurring in May. Winter lasts from November to January, during which temperatures can drop below 10 °C (50 °F). The highest ever recorded temperature in the city was 49°C, while the lowest was 3°C.

0.1.2 Study Area

In early 2012 Nagpur Improvement Trust (NIT) requested DMRC to provide Consultancy services for preparation of a Detailed Project Report for Metro Rail System in Nagpur, Maharashtra initially for 30 Km which was revised to 42 Km in July 2012. Thereafter, DMRC conducted Traffic Surveys, Topographical Surveys, Geotechnical Investigations and Environment Impact Assessment Survey.

The study area consisted of Nagpur Municipal Corporation Area. The study area totaled to approximately 217 sq km.

Based on the different types of surveys done by DMRC, metro alignments were finalized after repeated inspection of the road network, intersections, passenger traffic flow, traffic congestion, connectivity to important land uses. Alignment of routes proposed by DMRC were as follows

Alignment (Proposed by DMRC)	Detail Route
Alignment-1 North-South Corridor (21.833 Km, 17 stations)	Automotive Square, along Kamptee Road, Wardha Road, Variety Square to Abhyankar Road, along Nag River alignment will fall on Humpyard Road, Rahate Colony Road, Wardha Road, Khamla Road, Airport, MIHAN Area
Alignment-2 East – West Corridor (18.266 Km, 19 stations)	From Prajapati Nagar, along Central Avenue Road, Railway Feeder Road, Munje Chowk, Jhansi Ranee Chowk, North Ambajhari Road, Hingna Road, Lokmanya Nagar

FINAL ALIGNMENT FOR NAGPUR METRO

On 03.08.2013, a meeting presided by Shri S K Lohia, JS-MoUD,GoI was held at Nagpur to discuss the DPR. In that meeting, JS-MoUD,GoI expressed that the FIRR of the project should be at least 8%. Recently, MoUD has also issued advisory that FIRR of Metro Project should not be below 8%.

On 1.10.2013, a presentation on the DPR was made by M/s NIT to The Chief Minister, Government of Maharashtra. He was of the opinion to avoid underground alignment in MIHAN and also construct Maintenance Depot in the land belonging to State Govt Land. Subsequently, on 21.10.2013, a joint inspection of the NS corridor was done by VC&MD-MADC, Chairman-NIT, and Director Business Development-DMRC.

The original alignment of Corridor-I proposed was passing through Khamla Road, Airport Area after Sahakar Nagar and finally was ending at MIHAN. The alignment up to Old Airport Station was elevated, then for a length of 3.30 km, it was underground with one underground station named as New Airport Station and again elevated in MIHAN Area. Since the cost of underground section of the alignment is much more than the elevated section or the section at grade, alternative alignment was suggested for cost reduction, enhancement in PHPDT and to increase FIRR so that project becomes financially and economically viable.

The new proposed alignment suggested in the above inspection, was to pass through a 24m wide road adjacent to London Street after Sehkar Nagar Junction and was proposed to be taken to the east along 24m wide road and London Street up to Wardha Road. From the intersection at Wardha road, the elevated alignment was proposed to be on the central divider on the Wardha Road. After crossing existing intersection point of Wardha Road & Airport Road, the alignment was to be shifted to the MIHAN area. Alignment in this portion was proposed to be at grade and to run parallel to Wardha road upto ROB and abuting railway line thereafter up-to proposed Car depot.

But, while working on this modification of alignment, it was noticed that a very large number of properties were falling along the alignment due to sharp curve at the junction of Sahakar Nagar & 24 m wide road and also at the junction of 24m wide road & Wardha Road. Acquiring of these properties will be very tough and may delay the whole project.

Hence to avoid all such situation, it has been decided to take the alignment on Wardha Road only without going on Khamla Road.

Finally, NS Corridor will pass through Wardha Road after Congress Nagar Metro Station. After crossing existing intersection point of Wardha Road & Airport Road, the alignment will be shifted to the MIHAN area. Alignment in this portion will be at grade and will run parallel to Wardha road upto ROB and parallel to railway line thereafter up-to proposed Car depot. 14m wide stretch of land between the railway boundary line and the road near proposed Container Depot of Container Corporation of India Ltd. will be affected by this proposed alignment of the Metro Rail as the proposed alignment passes through this stretch of land. 73 Ha land is available on the west side of railway line and south of existing flyover near khapari station. Average width of this land is about 80m and is about 1800m long. This MADC land may be utilized for Car Depot. Similarly, Depot of EW Corridor has also been shifted to SRP Land near proposed Lokmanya Nagar Metro Station.

This has caused deletion of few earlier proposed metro stations on NS Corridor and addition of new stations on the same.

Final alignment for both the corridors is as below :

Alignment	Detail Route				
Alignment-1 North-South Corridor (19.658 km, 17 Stations)	Automotive Square, along Kamptee Road, Wardha Road, Variety Square to Abhyankar Road, along Nag River alignment will fall on Humpyard Road, Rahate Colony Road, Wardha Road, Parallel to Railway Line, Khapri Station and finally in MIHAN Area near concor depot				
Alignment-2 East – West Corridor (18.557 km, 19 Stations)	From Prajapati Nagar, along Central Avenue Road, Railway Feeder Road, Munje Chowk, Jhansi Ranee Chowk, North Ambajhari Road, Hingna Road, Lokmanya Nagar				

Table 0.1B FINAL ALIGNMENT

0.2 TRAFFIC DEMAND

0.2.1 Traffic Study and Ridership estimation are the first tasks in DPR which imply finalizing a feasible alignment plan of the proposed metro network and then locating normal and interchange metro stations (if any). After that, Ridership Estimation is done. Estimating daily and peak hour boarding and alighting from each station, daily link load and PHPDT link loads [all together is called Ridership Estimation] are estimated. These estimates are primary inputs to other important estimates such as station design, train operation plan, estimates of revenue collection, benefits of metro, rolling stock and many other estimates including EIRR and FIRR.

0.2.2 Station Loading (Daily and Peak)

Total daily boarding ridership in 2016 is estimated as 3.52 lakhs in which share of line 1 as 47% and line 2 as 53%. Average trip length is 6.41km. The daily and peak station

loads of the Metro System comprises of the following lines, are described as under in **Table 0.2.**

Table 0.2: Summary Output : Traffic							
BOARDING/RIDERSHIP (DAY)	2016	2021	2026	2031	2036	2041	
ON LINE 1(AUTOMATIVE- KHAPRI)	168361	185531	203720	224316	248419	277704	
ON LINE 2(PRAJAPATI- LOKMANYA)	184081	197908	215415	234577	260237	286031	
TOTAL OF BOTH	352442	383439	419135	458893	508656	563735	
AVERAGE TRIP LENGTH IN KM	6.419	6.453	6.494	6.533	6.521	6.522	
MAXIMUM PHPDT ON LINE 1	10089	10936	11915	12934	14286	15729	
MAXIMUM PHPDT ON LINE 2	7746	8460	9154	9906	10748	11882	

Table 0.2: Summary Output : Traffic

0.3 SYSTEM SELECTION

The population growth in cities and urban centers has put a lot of pressure on the infrastructure of these cities. In rapidly developing countries like India the urban infrastructure is stretched to limit and requires very effective solutions. The rapid development in India is not unprecedented and such development earlier took place in several nations of Europe, America and in Japan. So several modes of urban mass transit are now available for solution to the problem of Urban Transit.

0.3.1 Benefits of Mass Transport System

The main benefits addressed by mass transport are the mobility and freedom. The sustainability of mass transport has greater potential and major benefits occur through immediate means of helping the environment and conserving energy. In developing countries, like India, benefit through mass transit systems extend to urban poor with affordable fare structure when compared with costs incurred by private transportation on fuels, parking, congestion etc. The supply of planned and integrated mass public transport is the only way to relieve traffic congestion and reduce hours of delay on major travel corridors. Moreover, supply of metro rail system in Nagpur will mean a lot in terms of sustainable means of transport that meets the mobility and accessibility needs of people.

0.3.2 Feasibility of Metro System:

From the 'Traffic Demand Forecast' it can be seen that peak hour peak direction trips (PHPDT) on the North South Corridor is 10089,10936,12934 and 15729 the year of 2016, 2021, 2031 and 2041 respectively. Similarly PHPDT on East West corridor in the year of 2016, 2021, 2031 and 2041 is 7746,8460,9906 and 11882 respectively.

Road-based systems can optimally carry up to a maximum of 8,000 PHPDT. Since the PHPDT assumed on the above corridors exceed 8,000, there can be two options namely 1) Mono Rail and 2) Light Capacity Metro. Mono rail can carry the PHPDT projected but this technology is not a tested one. The operation and maintenance cost is much higher that Light metro. The capital cost of Mono rail is also almost same as that of Light Metro with no experience of Mono rail in India. Even in the other countries, the Mono rail is being adopted only for small lengths and as feeder to Metro. Hence, keeping in view the above disadvantages, it is recommended to adopt an stable, tested and reliable Metro technology. However, for Nagpur it will be Light Capacity Metro System.

0.4 GEOMETRIC DESIGN NORMS

The geometrical design norms are based on international practices adopted for similar metro systems with standard gauge on the assumption that the maximum permissible speed on the section is limited to 85 kmph. Planning for any higher speed is not desirable as the average inter-station distance (37 stations in approx. 40 km) is about 1.10 km and trains will not be able to achieve higher speed.

0.4.1 GEOMETRIC DESIGN PARAMETERS

i) Horizontal Curves

Table 0.3: Horizontal Curve Parameters

Description	Underground Section	Elevated Section		
Desirable Minimum radius	300 m	200 m		
Absolute minimum radius	200 m (only c/c)	120 m		
Minimum curve radius at stations	1000 m	1000 m		
Maximum permissible cant (Ca)	125 mm	125 mm		
Maximum desirable cant	110 mm	110 mm		
Maximum cant deficiency (Cd)	85 mm	85 mm		

ii) Transition Curves

- Length of Transitions of Horizontal curves (m)
 - Minimum : 0.44 times actual cant or cant deficiency (in mm), whichever is higher.
 - Desirable : 0.72 times actual cant or cant deficiency, (in mm), whichever is higher.
- Overlap between transition curves and vertical curves not allowed.
- Minimum straight between two Transition curves (in case of reverse curves): either 25 m or Nil.
- Minimum straight between two Transition curves (in case of same flexure curves): either 25 m or both curves should be converted in to the compound curve by introducing single transition between the two circulars.
- Minimum curve length between two transition curves: 25 m
- iii) Gradients

Normally the stations shall be on level stretch. In limited cases, station may be on a grade of 0.1 %. Between stations, generally the grades may not be steeper than 3.0 %. However, where existing road gradients are steeper than 2 %, or for Switch Over Ramps gradient up to 4% (compensated) can be provided in short stretches on the main line.

iv) Vertical Curves

Vertical curves are to be provided when change in gradient exceeds 0.4%. However, it is recommended to provide vertical curves at every change of gradient.

v) Radius of vertical curves:

•	On main line (desirable) (Absolute minimum)	:	2500 m 1500 m
•	Other Locations Minimum length of vertical curve	:	1500 m 20 m

0.4.2 Route Alignment

Two Corridors have been identified for implementation in phase I of Nagpur Metro Rail Project network as per details given as under:-

- Corridor I: North-South Corridor : Automative Square to KHAPRI
- Corridor II: East West Corridor : Prajapati Nagar to Lokmanya Nagar

0.4.2.1 North-South Corridor : Automative Square to KHAPRI

This corridor originates from Automotive Square on Kamptee Road; move along Kamptee Road and reach the intersection point of Amravati Road and Vardha Road,

then after crossing Fly Over moves towards Munje Square, moves towards Dhantoli and along nala moves towards Empire/Dr Munje Marg, leads towards Congress Nagar T-Point, then on Rahate Colony Road and then falls on Wardha Road, leads towards NEERI, then moves along Wardha Road and then west of Railway Track in MIHAN area. And passes through 14m wide stretch of land between the railway boundary line and the road near proposed Container Depot.

Entire length (19.658 Km.) of this corridor is proposed as elevated except in 4.6 Km at grade after Airport Station and in MIHAN area near Khapri Railway StatioN.. There are 17 stations on this corridor of which 15 stations are elevated and 2 stations are at Grade. Sitaburdi Station is an Inter-change station.

0.4.2.2 East West Corridor : Prajapati Nagar to Lokmanya Nagar

This corridor originates from Prajapati Nagar and runs westwards, through Vaishnodevi Chowk, Ambedkar Chowk, Telephone Exchange, Chittar Oli Chowk, Agarsen Chowk, Doser Vaisya Chowk, Nagpur Railway Station, Sitaburdi, Jhansi Rani Square, Institute of Engineers, Shankar Nagar Square, Lad chowk, Dharmpeth College, Subhash Nagar, Rachna (Ring road Junction), Vasudev Nagar, Bansi Nagar to Lomanya Nagar. The entire corridor is elevated.

The total length of the corridor is 18.557 kilometer. There are 19 stations on this corridor. All stations are elevated stations and Sitaburdi station is an Interchange Station.

0.5 CIVIL ENGINEERING

0.5.1 Elevated Section - Choice of Superstructure

The choice of superstructure has to be made keeping in view the ease of constructability and the maximum standardization of the formwork for a wide span ranges.

The segmental construction has been chosen mainly due to the following advantages:

- Segmental construction is an efficient and economical method for a large range of span lengths and types of structures. Structures with sharp curves and variable super elevation can be easily accommodated.
- Segmental construction permits a reduction of construction time as segments may be manufactured while substructure work proceeds and assembled rapidly thereafter.
- Segmental construction protects the environment as only space required for foundation and sub-station is required at site. The superstructure is manufactured at a place away from busy areas and placement of superstructure is done with the system erected from piers at heights.

- Segments are easy to stack in the casting yard/stacking yard in more than one layer, thereby saving in requirement of space.
- It is easier to transport smaller segments by road trailers on city roads.
- It is easy to incorporate last minute changes in span configuration if the site situation so warrants.
- Interference to the traffic during construction is significantly reduced.
- Segmental construction contributes towards aesthetically pleasing structures and good finishes.
- The overall labour requirement is less than that for conventional methods.
- Better quality control is possible in the casting yard.
- During construction, the technique shows an exceptionally high record of safety

0.5.2 Types of Superstructures for Elevated Section

- Pre-cast segmental box girder using external unbounded tendon
- Pre-cast segmental U-Channel Superstructure with internal pre-stressing.

0.5.3 CONSTRUCTION METHODOLOGY

For the elevated sections it is recommended to have pre-cast segmental construction for super structure for the viaduct. For stations also the superstructure is generally of pre-cast members. The pre-cast construction will have following advantages:-

• Reduction in construction period due to concurrent working for substructure and superstructure.

• For segmental, pre-cast element (of generally 3.0m length), transportation from construction depot to site is easy and economical.

• Minimum inconvenience is caused to the public utilizing the road as the superstructure launching is carried out through launching girder requiring narrow width of the road.

• As the pre-cast elements are cast on production line in a construction depot, very good quality can be ensured.

• The method is environment friendly as no concreting work is carried at site for the superstructure

0.5.4 Utility Diversion

It is suggested that all utilities falling within excavation area are diverted away in advance to avoid damage to such utilities during the excavation/ construction phase. The cross utilities, however has to be kept supported. It is suggested that pressure water pipelines crossing the proposed cut area are provided with valves on both sides of the cut so that the cut area can be isolated in case of any leakage to the pipeline to avoid flooding of the cut/damage to the works.

0.5.5 Geo-Technical Investigations

0.5.5.1 Physiography

Nagpur is situated at 21° 09' N latitude and 79° 09' E longitude and a mean altitude of 310 meters above sea level. Being located far away from any major water body at the centre of the Indian peninsula, the Nagpur's climate is dry or mildly humid for most of the year except for the rainy season. The highest ever recorded temperature in the city was 49 °C, while the lowest was 3°C. The geology of the Nagpur region is famous for the metamorphic rocks, which occur in all the districts in the Nagpur region except Wardha and some part of Nagpur district. The other geological formation Deccan Traps occur in the Wardha and North and North-West part of Nagpur District

0.5.5.2 Objective of Geotechnical Investigation

The main objectives of Geo-Technical Investigation Services are:

- To determine the required strength characteristics of the underlying soil/rock strata to design the foundation of the structure proposed to be constructed at various locations.
- To determine the subsurface profile of the underlying strata.
- To decide the construction methodology.

0.5.5.3 Details of Bore Holes

Investigation Works

Geotechnical investigation work at site was carried out to determine the existing subsoil strata, proposed type & depth of foundations and safe bearing capacity of foundations required for the proposed two Metro Corridors in Nagpur based on the results of 80 boreholes. 41 bore holes were driven in AUTOMOTIVE SQUARE TO MIHAN alignment & 39 boreholes were driven in Lokmanya Nagar to Prajapati Nagar alignment. However, due to the site condition, depth of drilling work ranging from 10.50m to 25m was carried out at the proposed locations.

Table :0.4 SUMMARY OF BORE HOLES N.S.CORRIDOR

BH No.	Location Details	Total depth	Soil	Soft Rock	Hard Rock	Water Table (m)
1	Automative Chowk	25.00	15.00	10.00	-	7.20
2	Go Gas Pump	16.50	6.50	10.00	-	7.10
3	kailly Automobiles	17.00	7.00	10.00	-	7.20
4	Lal godown chowk	15.50	5.50	10.00	-	6.00
5	New Indira Hindi School	16.00	6.00	10.00	-	6.90
6	Oppt. Jaswant Tuli Mall,	16.00	6.00	10.00	-	7.10

x/xxxviii

BH No.	Location Details	Total depth	Soil	Soft Rock	Hard Rock	Water Table (m)
7	Bharat Petrol Pump (10 No. Pulia)	14.50	4.50	10.00	-	5.40
8	Kadwii Chowk,	14.50	4.50	10.00	-	5.15
9	Gurudwara (Railway Line Near)	20.00	10.00	10.00	-	5.00
10	Gaddi Godown Chowk	12.00	2.00	10.00	-	4.25
11	L.I.C Chowk, AHM Church Campus	11.50	1.50	10.00	-	4.40
12	R.B.I Bank Chowk	12.00	2.00	10.00	-	4.00
13	Morrises Collage, T. Point	11.00	1.00	10.00	-	3.85
14	Sita Burdi Police Station	14.50	4.50	10.00	-	5.00
15	Ras Furniture, Oppt. Nangle Traders	16.00	6.00	10.00	-	4.70
16	Yaswant Stadium	17.00	7.00	10.00	-	4.60
17	Dhantoli P.S, Oppt. Green City Hotel	17.50	7.50	10.00	-	5.10
18	Madhukar Arts (M. Printers)	15.00	5.00	10.00	-	3.20
19	Asha Towers	14.50	4.50	10.00	-	3.90
20	Hardikar Chowk	14.00	4.00	10.00	-	3.40
21	Central Jail	15.00	5.00	10.00	-	3.60
22	Clock Tower Rajive Gandhi Chowk	11.50	1.50	10.00	-	3.25
23	Sanskar Vidhya Sagar School	12.50	2.50	10.00	-	4.00
24	Bharat Creations/Sanjay Traders	13.00	3.00	10.00	-	4.10
25	Sawarkar Chowk	12.50	2.50	10.00	-	2.90
26	Khamla Bus Stop	12.50	2.50	10.00	-	3.60
27	Baba Hardware/Vijay Trading	13.00	3.00	10.00	-	3.00
28	Arun Rao Purnakar Chowk (Puliya)	13.00	3.00	10.00	-	2.10
29	Park/Dence Forest Area (Airport)	14.00	4.00	10.00	-	2.90
30	Parking Airport	14.50	4.50	10.00	-	2.10
31	Airport Boundry	14.50	4.50	10.00	-	3.70

Table :0.5 SUMMARY OF BORE HOLES E W CORRIDOR

BH No.	Location Details		Soil	Soft Rock	Hard Rock	Water Table (m)
1	AIA Engineering Limited.	11.00	1.00	5.00	5.00	3.50
2	C.R.P.F Gate No1	11.00	1.00	6.00	4.00	4.20
3	Mahindra Company	11.50	1.50	6.00	4.00	4.30
4	Ambru Batti Chowk (Near Dharam kantta)	11.50	1.50	10.00	-	4.05
5	Toll Tax Naka	11.00	1.00	10.00	-	4.25
6	Super Enclave, Opp. Prashant Trading	11.50	1.50	10.00	-	5.30
7	Hingna T. Point	10.50	0.50	10.00	-	4.70
8	Karankutti Hotel	11.00	1.00	10.00	-	4.60
9	Pump House (G.C.C.R.P.F) Nagpur.	10.50	0.50	10.00	-	5.10
10	Subhash Nagar Chowk,	12.50	2.50	9.00	1.00	4.20
11	Nagpur Improvement Trust, Crazy Castle.	13.00	3.00	10.00	-	4.40
12	Tanveer Hotel	12.50	2.50	10.00	-	3.40
13	Leela house (Near Ambajhari T.Point)	12.00	2.00	8.50	1.50	3.60
14	L.A.D. Chowk	13.00	3.00	10.00	-	5.10
15	Shankar Nagar chowk	13.00	3.00	10.00	-	5.15
16	Adrash S.S High School	12.00	2.00	10.00	-	5.10
17	Dharampeeth Vidhyalay	14.00	4.00	10.00	-	4.90
18	A.M.I.E (Nagpur Local Center)	14.00	4.00	10.00	-	5.50

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

xi/xxxviii

BH No.	Location Details	Total depth	Soil	Soft Rock	Hard Rock	Water Table (m)
19	M.J Collage	14.50	4.50	10.00	-	4.90
20	Jhansi Rani Chowk	14.00	4.00	10.00	-	5.10
21	Munje Chowk	14.00	4.00	10.00	-	5.70
22	Railway Push Box.	14.50	4.50	10.00	-	4.60
23	Nagpur Corporation octroi Naka - 13	14.00	4.00	10.00	-	4.20
24	Hazrat baba majar	14.00	4.00	10.00	-	5.30
25	Mayo Hospital	12.00	2.00	10.00	-	3.90
26	Sewa Sadan Chowk	13.00	3.00	10.00	-	4.50
27	Gandhi Bagh (Bus Stop)	12.50	2.50	10.00	-	4.35
28	Chittarawali Chowk	13.20	3.20	10.00	-	4.70
29	Darodkar Chowk	13.15	3.15	10.00	-	4.60
30	Rahate Hospital	14.50	4.50	10.00	-	4.75
31	Telephone Exchange	16.00	6.00	10.00	-	7.20
32	Chapro Nagar Chowk, Bharat Furniture	16.00	6.00	10.00	-	5.30
33	Ambedkar Chowk,	17.50	7.50	10.00	-	4.90
34	Ali Electrical, Vardhman Nagar Chowk	16.50	6.50	10.00	-	7.40
35	Near Mahalaxmi Collaction	18.50	8.50	10.00	-	6.40
36	Sapna Bar & Restorent	17.00	7.00	10.00	-	4.30
37	Radhe Krishan Hospital Chowk	17.50	7.50	10.00	-	7.30
38	Desi Wine Shop	21.00	10.00	10.00	-	7.60
39	Gomti Hotel, Near P & B Bank	25.00	10.00	10.00	-	7.30

TYPE OF FOUNDATION :NORTH – SOUTH CORRIDOR

A : Bored Cast in situ RCC Pile

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the most feasible soil-foundation system is recommended as normal bored cast in situ R.C.C. piles foundations of 0.80m & 1.0m diameter at different depths with cut-off level at 1.50m to 2.0m depth below existing Ground level. The safe load carrying capacities of these piles are given in following table.

Borehole	Dia. of	Cutoff	Depth, m	Pile	Capacity	
Nos	Pile	level	Deptil, ill	Compression	Uplift	Lateral
1	0.80	1.50	19.00	185.0	90.0	9.0
1	1.00	1.50	19.00	300.0	120.0	12.0
2, 3	0.80	1.50	11.00	170.0	40.0	9.0
2, 3	1.00	1.50	11.00	250.0	50.0	12.0
4,5,6	0.80	1.50	10.50	170.0	45.0	9.0

Table 0.6 :RCC PILE DETAILS FOR NORTH – SOUTH CORRIDOR

	1.00	1.50	10.50	250.0	50.0	12.0
7,8	0.80	1.50	10.00	150.0	35.0	9.0
7,0	1.00	1.50	10.00	225.0	45.0	12.0
9	0.80	1.50	15.00	220.0	85.0	9.0
9	1.00	1.50	15.00	320.0	100.0	12.0
14	0.80	1.50	10.00	150.0	35.0	9.0
14	1.00	1.50	10.00	225.0	45.0	12.0
15,16	0.80	1.50	11.00	170.0	40.0	9.0
15,10	1.00	1.50	11.00	250.0	50.0	12.0
17	0.80	1.50	12.00	180.0	45.0	9.0
17	1.00	1.50	12.00	260.0	55.0	12.0
18 to 21	0.80	1.50	10.00	150.0	35.0	9.0
10 10 21	1.00	1.50	10.00	225.0	45.0	12.0
23 to 28	0.80	1.50	10.00	140.0	33.0	9.0
201020	1.00	1.50	10.00	210.0	40.0	12.0
29 to 32	0.80	1.50	10.00	150.0	35.0	9.0
2010 02	1.00	1.50	10.00	225.0	45.0	12.0

B: Open square footing

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the types of foundations, depths and net safe bearing capacities recommended for design purposes are given in the following table. The net SBC/API in the following table are the lower of the values obtained from shear failure criterion as per IS: 6403 and settlement failure criterion as per IS: 8009, Part-I.

Table 0.7 : OPEN FOUNDATION DETAILS FOR NORTH – SOUTH CORRIDOR For Permissible settlement = 40.0 mm

Type of Foundation	Depth of Foundation (m)	Size of Foundation (m)	Net Safe Bearing Capacity/ Allowable Pressure Intensity (t/m ²)								
For Bore Hol	For Bore Hole Nos : 10 to 13, 22 & 33 to 41 :										
Square footing	2.50 to 3.0	5.0 to 6.0	20.00								

Note: For design purpose water table shall be considered at foundation level.

TYPE OF FOUNDATION : EAST - WEST CORRIDOR

A : Bored Cast in situ RCC Pile

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the most feasible soil-foundation system is recommended as normal bored cast in situ R.C.C. piles foundations of 0.80m & 1.0m diameter at different depths with cut-off level at 1.50m to 2.0m depth below existing Ground level. The safe load carrying capacities of these piles are given in following table.

Borehole	Dia. of	Cutoff	Donth m	Pile	Capacity	
Nos	Pile	level	Depth, m	Compression	Uplift	Lateral
11	0.80	1.50	12.00	400.0	60.0	9.0
11	1.00	1.50	12.00	600.0	90.0	12.0
17 – 22	0.80	1.50	14.00	155.0	50.0	9.0
17 - 22	1.00	1.50	14.00	240.0	70.0	12.0
23 – 24	0.80	1.50	14.00	180.0	60.0	9.0
23 - 24	1.00	1.50	14.00	250.0	75.0	12.0
25 – 29	0.80	1.50	12.00	150.0	40.0	9.0
25 - 29	1.00	1.50	12.00	220.0	50.0	12.0
30 – 31	0.80	1.50	14.00	170.0	50.0	9.0
30 - 31	1.00	1.50	14.00	240.0	70.0	12.0
32	0.80	1.50	12.00	170.0	40.0	9.0
52	1.00	1.50	12.00	250.0	50.0	12.0
33 – 34	0.80	1.50	15.00	200.0	80.0	9.0
55 - 54	1.00	1.50	15.00	300.0	100.0	12.0
35 – 37	0.80	1.50	15.00	190.0	75.0	9.0
35 - 37	1.00	1.50	15.00	300.0	100.0	12.0
38	0.80	1.50	15.00	180.0	80.0	9.0
30	1.00	1.50	15.00	250.0	100.0	12.0
39	0.80	1.50	20.00	200.0	80.0	9.0
59	1.00	1.50	20.00	300.0	100.0	12.0

Table 0.8 : RCC PILE DETAILS FOR EAST - WEST CORRIDOR

Note:

- 1. For design purpose, water table shall be considered at cut off level.
- 2. For design purpose, effective overburden pressure at pile tip should correspond to pile length equal to 15 times the diameter.
- 3. The above values should be confirmed through pile load tests in the field before adopting these values for design purposes.

B : Open square footing

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the types of foundations, depths and net safe bearing capacities recommended for design purposes are given in the following table. The net SBC/API in the following table are the lower of the values obtained from shear failure criterion as per IS: 6403 and settlement failure criterion as per IS: 8009, Part-I.

Type of Foundatio n	B/Hole No	Depth of Foundatio n (m)	Size of Foundation (m)	Net Safe Bearing Capacity/ Allowable Pressure Intensity (t/m ²)
	1 – 9	2.50 - 3.0	5.0 to 6.0	25.00
	10 & 12	3.0	5.0 to 6.0	20.00
Square footing	12 – 13	3.0	5.0 to 6.0	20.00
	14 – 15	3.00 - 4.00	5.0 to 6.0	25.00
	16	3.0	5.0 to 6.0	20.00

 Table :0.9: OPEN FOUNDATION DETAILS FOR EAST-WEST CORRIDOR

 For Permissible settlement = 40.0 mm

Note: For design purpose water table shall be considered at foundation level.

0.5.6 LAND

Land Requirement for following Major Components

- MRTS Structure (including Route Alignment), Station Building, Platforms, Entry/Exit Structures, Traffic Integration Facilities, Depots, etc.
- Receiving/Traction Sub-stations
- Radio Towers
- Temporary Construction Depots and work sites.
- Staff quarters, office complex and operation control centre(OCC)

Table 0.10: Summary of Permanent Land Requirement *

LAND DETAILS	EAST-WEST C PRAJAPATI N LOKMANYA	AGAR TO	NORTH-SOUTH CORRIDOR AUTOMATIVE SQUARE TO KHAPRI DEPOT		
	GOVT. LAND (in sqm)	PVT. LAND (in sqm)	GOVT. LAND (in sqm)	PVT. LAND (in sqm)	
STATIONS EXIT/ENTRY	3644.80	7769.40	7525.30	13812.50	
RUNNING SECTION	3255.30	5680.80	101882.00	19025.90	
DEPOT AREA	258973.00		339000.00		
TRAFFIC INTEGRATION/PARKING	8779.10	1465.70	53759.80	5179.20	
TOTAL	274652.20	14915.90 502167.10 38017.			
TOTAL GOVT LAND	776819.30	SAY 77.68 HECTARES			
TOTAL PVT LAND	52933.50	SAY 5.3 HECTARES			

*Apart from this the State Government should provide 20 hectare land free of cost for PD activity. Also for construction depots, temporary land @2 hectares per 10 km. will be required on Temporary Basis.

0.6 STATION PLANNING

Line -1 (North-South Corridor) Automative Square to KHAPRI Depot

A total of 17 Stations have been planned along the proposed NS Corridor. This corridor originates starts from Automotive square and runs southwards on NH-7 through Nari Road, Indora chowk, Gaddi Godam Square, Kastrurchand Park, Zero Mile, Sitaburdi, Congress Nagar, Rahate colony, Ajn Sqre Station, Chhatrapati Sqr Station, Jaiprakash Nagar, Ujjawal Nagar, Airport Station, New Airport Station and Khapri Station. The Corridor is partly elevated and partly at grade. Total Length of the corridor is 19.658 Km of which approximately 15.058 is elevated and 4.6 km is at grade. There are 17 stations on this corridor of which 15 stations are elevated and 2 stations are at grade. Sitaburdi Station is an Inter-change station. Average inter-station distance is 1.20km approximately varying from 0.54km to 2.4km depending upon the site, operational and traffic requirements. The sequence of stations with their respective chainages and locational and platform characteristics is presented in **Table 0.11A**.

	Table 0.11A: NS Corridor :	
Sequence of Stations with	Chainages and Locational	& Platform Characteristics

	Name of Station	Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment
	Dead End	-145.0				
1.	AUTOMOTIVE SQRE	0.0	408.2	303.900	Side	Elevated
2.	NARI ROAD	975.8	975.8	308.900	Side	Elevated
3.	INDORA CHOWK	2139.7	1163.9	314.100	Side	Elevated
4.	KADVI CHOWK	3181.2	1041.5	318.400	Side	Elevated
5.	GADDI GODAM SQRE	4399.0	1217.8	323.200	Side	Elevated
6.	KASTURCHAND PARK	5148.6	749.6	326.300	Side	Elevated
7.	ZERO MILE	6175.5	1026.9	319.600	Side	Elevated
8.	SITABURDI	6709.2	533.7	310.900	Side	Elevated
9.	CONGRESS NAGAR	7897.2	1188.0	317.900	Side	Elevated
10.	RAHATE COLONY	8682.6	785.4	321.500	Side	Elevated
11.	AJNI SQUARE	10104.7	1422.1	315.300	Side	Elevated
12.	CHHATRAPATI SQUARE	11146.3	1041.6	319.500	Side	Elevated
13.	JAIPRAKASH NAGAR	11811.5	665.2	320.000	Side	Elevated
14.	UJWAL NAGAR	12846.6	1035.1	311.000	Side	Elevated

	Name of Station	Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment
15.	AIRPORT	13784.9	938.3	313.300	Side	Elevated
16.	NEW AIRPORT	16184.4	2399.5	299.000	Side	At-Grade
17.	KHAPARI	18460.6	2276.2	308.700	Side	At-Grade
	Dead End	19250.0				

Line -2 (East-West Corridor) Prajapati Nagar to Lokmanya Nagar

A total of 19 Stations have been planned along the proposed EW Corridor This corridor originates from Prajapati Nagar and runs westwards, through Vaishnodevi Chowk, Ambedkar Chowk, Telephone Exchange, Chittar Oli Chowk, Agrasen Chowk, Doser Vaisya Chowk, Nagpur Railway Station, Sitaburdi, Jhansi Rani Square, Institute of Engineers, Shankar Nagar Square, LAD chowk, Dharmpeth College, Subhash Nagar, Rachna (Ring road Junction), Vasudev Nagar, Bansi Nagar to Lomanya Nagar. The entire corridor is elevated. The total length of the corridor is 18.266 kilometer. All stations are elevated stations and Sitaburdi station is an Interchange Station. Average inter-station distance is 1.00km approximately varying from 0.65km to 1.29km depending upon the site, operational and traffic requirements. The sequence of stations with their respective chainages and locational and platform characteristics is presented in **Table 0.11B**

Name of Station		Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment
	Dead End	-392.0				
1	Prajapati Nagar	0.0	392.0	301.0	Side	Elevated
2	Vaishno Devi Chowk	1229.3	1229.3	305.3	Side	Elevated
3	Ambedkar Chowk	1947.9	718.6	308.3	Side	Elevated
4	Telephone Exchange	3137.4	1189.5	311.6	Side	Elevated
5	Chittar Oli Chowk	3950.2	812.8	311.5	Side	Elevated
6	Agarsen Chowk	4759.8	809.6	319.5	Side	Elevated
7	Dosar Vaisya Chowk	5590.4	830.6	321.9	Side	Elevated
8	Nagpur Railway station	6464.4	874.0	319.7	Side	Elevated
9	Sitaburdi (Interchange)	7707.7	1243.3	320.1	Side	Elevated
10	Jhansi Rani Square	8354.0	646.3	313.9	Side	Elevated

Table 0.11 B: EW Corridor : Sequence of Stations with Chainages and Locational & Platform Characteristics

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

xvii/xxxviii

	Name of Station	Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment
11	Institute Of Engineers	9117.2	763.2	315.4	Side	Elevated
12	Shankar Nagar Square	10074.9	957.7	316.9	Side	Elevated
13	Lad Chowk	10873.1	798.2	319.1	Side	Elevated
14	Dharmpeth College	12020.7	1147.6	329.5	Side	Elevated
15	Subhash Nagar	12947.1	926.4	336.0	Side	Elevated
16	Rachna Ring Road Jn.	14201.1	1254.0	338.8	Side	Elevated
17	Vasdev Nagar	15173.9	972.8	345.2	Side	Elevated
18	Bansi Nagar	16131.6	957.7	336.3	Side	Elevated
19	Lokmanya Nagar	17792.6	1661.0	330.4	Side	Elevated
	Dead end	18165.0	372.4			

Site specific plans for the stations were prepared and put up in the respective chapter.

0.7 TRAIN OPERATION PLAN

0.7.1 Operation Philosophy

The underlying operation philosophy is to make the MRT System more attractive and economical, the main features being:

- Selecting the most optimum frequency of Train services to meet sectional capacity requirement during peak hours on most of the sections.
- Economical & optimum train service frequency not only during peak period, but also during off-peak period.
- A short train consists of 3 coaches.
- Multi-tasking of train operation and maintenance staff.

0.7.2 Train Operation Plan

0.7.2.1 Salient Features

- Running of services for 19 hours of the day (5 AM to Midnight) with a station dwell time of 30 seconds, No services are proposed between 00.00 hrs to 5.00 hrs, which are reserved for maintenance of infrastructure and rolling stock.
- Make up time of 5-10% with 8-12% coasting.
- Scheduled speed for these corridors has been assumed as: <u>Line-1: North – South Corridor</u>
 - 'Automotive Sqre to Congress Nagar' section: 32 kmph
 - 'Congress Nagar to Depot Station' section: 36 kmph

Line-2: East-West Corridor

- 'Prajapati Nagar to Lokmanya Nagar' section: 30 kmph
- 'Agrasen Chowk to Subhash Nagar' section: 29 kmph

0.7.2.2 Train formation

To meet the above projected traffic demand, the possibility of running trains with composition of 3 cars with different headway has been examined.

Composition

DMC : Driving Motor Car

TC : Trailer Car

Capacity (@ 6 passengers per square meter of standee area)

Driving Motor Car (DMC)	-	247 (43 seated + 204 standing)
Trailer Car (TC)	-	270 (50 seated + 220 standing)
3 Car Train	-	764 (136 seated + 628 standing)

0.7.2.3 PHPDT capacity provided

Table 0.12: PHPDT capacity provided

Description		YE	AR	
	2016	2021	2031	2041
North – South Corridor				
Cars/trains	3	3	3	3
Head way (Minutes)	6.0/12	5/10	4/8	3/6
Max. PHPDT Demand	10089	10936	12934	15729
PHPDT Capacity Available	7640 (9730*)	9168 (1676*)	11460 (14595*)	15280 (19460*)
East – West Corridor				
Cars/trains	3	3	3	3
Head way (Minutes)	6.5/13	6/12	4.5/9	3.5/7
Max. PHPDT Demand	7746	8460	9906	11882
PHPDT Capacity Available	7052 (8982*)	7640 (9730*)	10187 (12973*)	13097 (16680)*

* @ 8 persons per square meter of standee area

0.7.2.4 Year wise rake requirement

Based on Train formation and headway as decided above to meet Peak Hour Peak Direction Traffic Demand, Rake requirement has been calculated and enclosed as Attachment V in respective chapter & has been tabulated below:

Corridor	Year	No. of Rakes	Rake Consist	No. of cars
	2016	11	3 car	33
North – South Corridor	2021	12	3 car	39
	2031	16	3 car	51
	2041	20	3 car	63
	2016	12	3 car	36
East – West Corridor	2021	13	3 car	39
	2031	17	3 car	51
	2041	20	3 car	60

0.8 ROLLING STOCK

The required transport demand forecast is the governing factor for the choice of the Rolling Stock. The forecasted Peak Hour Peak Direction Traffic calls for a Light Capacity Metro System (MRTS).

0.8.1 Coach Size

The following optimum size of the coach has been chosen for this corridor as mentioned in **Table 0.14**

	Length*	Width	Height	
Driving Motor Car (DMC)	21.64 m	2.9 m	3.9 m	
Trailer car (TC)/Motor Car (MC)	21.34 m	2.9 m	3.9m	

Table 0.14: Size of the coach

*Maximum length of coach over couplers/buffers = 22.6 m

0.8.2 Passenger Carrying Capacity

In order to maximize the passenger carrying capacity, longitudinal seating arrangement shall be adopted. The whole train shall be vestibuled to distribute the passenger evenly in all the coaches. Criteria for the calculation of standing passengers are 3 persons per square meter of standing floor area in normal state and 6 persons in crush state of peak hour.

Therefore, for the Medium Rail Vehicles (MRV) with 2.9 m maximum width and longitudinal seat arrangement, conceptually the crush capacity of 43 seated, 204 standing thus a total of 247 passengers for a Driving motor car, and 50 seated, 220

standing thus a total of 270 for a trailer/motor car is envisaged. Following train composition is recommended:

3-car Train: DMC + TC + DMC

Table 0.15: Carrying Capacity of Medium Rail Vehicles

3 car Train Composition	: DMC +TC +DMC
Train Carrying Capacity of 3 Car Train (@6 passengers per square meter of standee area)	: 764 passengers @6 standee/sqm

NORMAL- 3 Person/sq. m of standee area, CRUSH - 6 Person/sq. m of standee area

0.9 SYSTEM OF TRACTION AND POWER TARIFF

The power requirements of a metro system are determined by peak-hour demands of power for traction and auxiliary applications. Broad estimation of auxiliary and traction power demand is made based on the following requirements:-

- (i) Specific energy consumption of rolling stock 75KWh/1000 GTKM
- (ii) Regeneration by rolling stock 30%
- (iii) Elevated station load initially 200KW, which will increase to 400 KW in the year 2041
- (iv) Underground Station load initially 2000 kW, which will increase to 2500 kW in the year 2041
- (v) Depot auxiliary load initially 1500 KW, which will increase to 2500 KW in the year 2041

Keeping in view of the train operation plan and demand of auxiliary and traction power requirements projected for the year 2016, 2021, 2031 and 2041 are summarized in **Table 0.16**:-

			Yea	ar	
Corridor		2016	2021	2031	2041
North-South Corridor – 1	Traction	4.32	5.01	5.84	7.16
Automotive Sqre to KHAPRI.		-			
[19.658 kms ; 15 elevated Stations & 2 at Grade Station].	Auxiliary	7.72	7.84	9.14	11.49
	Total	12.04	12.85	14.98	18.65
East-West Corridor – 2	Traction	4.24	4.57	5.73	7.01
Prajapati Nagar to Lokmanya Nagar [18,557 kms ; 19	Auxiliary	8.34	8.46	9.88	12.48
Elevated Stations].	Total	12.58	13.03	15.61	19.49

Table 0.16: Power Demand Estimation (MVA)

0.10 MAINTENANCE DEPOT

0.10.1 Depot-cum-Workshop

It is proposed to establish one depot- cum- workshop near Khapri Station in MADC Land for North South Corridor and one depot- cum- workshop in the land belonging to SRP near Lokmanya Nagar for East West Corridor with following functions:

a) <u>Depot- cum- workshop for North South Corridor (Line 1)</u>

- (i) Major overhauls of all the trains of Line 1.
- (ii) All minor schedules and repairs of Line 1.
- (iii) Lifting for replacement of heavy equipment and testing thereafter of Line 1.
- (iv) Repair of heavy equipments of Line 1.

b) Depot- cum- workshop for East West Corridor (Line 2)

- (i) Major overhauls of all the trains of Line 2.
- (ii) All minor schedules and repairs of Line 2.
- (iii) Lifting for replacement of heavy equipment and testing thereafter of Line 2.
- (iv) Repair of heavy equipments of Line 2.
- **0.10.2** The Depot planning near Khapri Station for North South Corridor and near Lokmanya Nagar for East West Corridor is based on following assumptions:
 - Enough space should be available near Khapri Station for North South Corridor and near Lokmanya Nagar for East West Corridor for establishment of a Depot- Cumworkshop
 - (ii) All inspection, workshop lines and stabling lines are designed to accommodate two trainsets of 3- car each.
 - (iii) All stabling lines are planned in the proposed depot-cum-workshop assuming adequate space availability. In case of space constraints, if any, stabling facilities may need to be created at terminal stations or elsewhere to cater to the required stability facilities.
 - (iv) Provision of transfer line from one corridor to another corridor.

In broad terms, based on the planned Rolling Stock requirements, this chapter covers conceptual design on following aspects and will work as a guide for detailed design later:

- Layout of Stabling-shed, Inspection-shed, minor repairs and heavy repair overhauling workshop and cleaning of Rolling Stock.
- Operational and functional safety requirements.
- Ancillary buildings for other maintenance facilities.
- Electrical & Mechanical Services, power supply and distribution system.
- Water Supplies, Drainage & Sewerage.

0.11 SIGNALLING

The signaling system shall provide the means for an efficient train control, ensuring safety in train movements. It assists in optimization of metro infrastructure investment and running of efficient train services on the network.

0.11.1 Standards

The following standards will be adopted with regard to the Signalling system.

	Description	Standards
•	Interlocking	Computer based Interlocking adopted for station having switches and crossing. All related equipment as far as possible will be centralised in the equipment room at the station. The depot shall be interlocked except for lines mainly used for workshop lines, inspection shed lines etc.
•	Operation of Points	With Direct current 110V D.C. point machines or 380 volts 3 phase, 50 Hz. AC point machines.
•	Track Circuit (if used)	Audio frequency Track circuits on running section, test track and in depot.
•	Signals at Stations with point & crossings	Line Side signals to protect the points (switches). LED type signals for reliability and reduced maintenance cost.
•	UPS (uninterrupted power at stations as well as for OCC)	For Signalling and Telecommunications

Table 0.17: Standards of Signalling System

	Description	Standards
•	Train protection system	Automatic Train Protection system (CBDT based). The system architecture shall provide for redundancy.
•	Train Describer System	Automatic Train Supervision system. Movement of all trains to be logged on to a central computer and displayed on workstations in the Operational Control Centre and at the SCR. Remote control of stations from the OCC. The system architecture shall provide for redundancy.
•	Cables	Outdoor cables will be steel armoured as far as possible.
•	Fail Safe Principles	SIL-4 safety levels as per CENELEC standard for signal application.
•	Immunity to External Interface.	All data transmission on telecom cables/OFC/Radio. All Signalling and telecom cables will be separated from power cables. CENELEC standards to be implemented for EMC.
•	Train Working under emergency	Running on site with line side signal with speed automatically restricted between 15-25 kmph.
•	Environmental Conditions	Air-conditioners for all equipment rooms.
•	Maintenance philosophy	Philosophy of continuous monitoring of system status and preventive & corrective maintenance of Signalling equipments shall be followed. Card / module / sub-system level replacement shall be done in the field and repairs under taken in the central laboratory/ manufacturer's premises.

0.12 TELECOMUNICATION AND AUTOMATIC FARE COLLECTION

The telecommunication system acts as the communication backbone for Signalling systems and other systems such as SCADA, AFC etc and provides telecommunication services to meet operational and administrative requirements of metro network.

0.12.1 Technology

The Technologies proposed to be adopted for telecommunication systems are shown in **Table 0.18** below:-

Sy	vstem	Standards				
•	Transmission Media	Optical Fibre system as the main bearer for bulk of the telecommunication network				
•	Telephone Exchange	EPABX of minimum 30 ports is to be provided at all Stations, an Exchange of 60 Ports to be provided at Terminal Station . Larger exchange is required at OCC/Depot depending upon the actual users				
•	Train Radio System	Digital Train radio (TETRA) communication between motorman of moving cars, stations, maintenance personnel and central control.				
•	Train Destination Indicator System	LED/LCD based boards with adequate visibility to be provided at convenient location at all stations to provide bilingual visual indication of the status of the running trains, and also special messages in emergencies.				
•	Centralized clock system	Accurate display of time through a synchronisation system of slave clocks driven from a master clock at the OCC and sub – master clock in station. This shall also be used for synchronisation other systems.				
•	Passenger Announcement System	Passenger Announcement System covering all platform and concourse areas with local as well as Central Announcement.				
•	Redundancy (Major System)	Redundancy on Radio's in the Base Stations, Path Redundancy for Optical Fibre Cable by provisioning in ring configuration.				
•	Environmental Conditions	All equipment rooms to be air-conditioned.				
		System to have, as far as possible, automatic switching facility to alternate routes/circuits in the event of failure.				
•	Maintenance Philosophy	Philosophy of preventive checks of maintenance to be followed. System networked with NMS for diagnosing faults and co-ordination.				
		Card/module level replacement shall be done in the field and repairs undertaken in the central laboratory/manufacture's premises.				

 Table 0.18: Technologies Proposed for Telecommunication Systems

ً

0.12.2 Automatic Fare Collection

Metro Rail Systems handle large number of passengers. Ticket issue and fare collection play a vital role in the efficient and proper operation of the system. To achieve this objective, ticketing system shall be simple, easy to use/operate and maintain, easy on accounting facilities, capable of issuing single/multiple journey tickets, amenable for quick fare changes and require overall lesser manpower. In view of above, computer based automatic fare collection system is proposed.

0.12.3 Automatic fare collection systems have the following advantages:

- 1. Less number of staff required.
- 2. Less possibility of leakage of revenue due to automatic ticket check by control gates.
- 3. Recycling of ticket fraudulently by staff avoided.
- 4. Efficient and easy to operate, faster evacuation both in normal and emergency.
- 5. System is amenable for quick fare changes.
- 6. Management information reports generation easy.
- 7. System has multi-operator capabilities. Same Smart Card can be used for other applications also, including in other lines of the Metro.
- 8. AFC systems are the worldwide accepted systems for LRT/Metro environment.

0.12.4 Technology

The technology proposed for AFC systems are as given under in **Table 0.19**:

Standards	Description
Fare media	a) Contactless smart card – For multiple journeys.b) Single Journey : Contactless Token
• Gates	 Computer controlled retractable flap type automatic gates at entry and exit. There will be following types of gates: Entry Exit Reversible (if required as per final station layout) – can be set to entry or exit Reversible Handicapped Gate -gate for disabled people.

Table 0.19: Technologies Proposed for AFC Systems

Standards	Description
 Station computer, Central computer and AFC Net work 	All the fare collection equipment shall be connected in a local area network with a station server controlling the activities of all the machines. These station servers will be linked to the central computer situated in the operational control centre through the optic fibre communication channels. The centralised control of the system shall provide real time data of earnings, passenger flow analysis, blacklisting of specified cards etc.
 Ticket office machine (TOM/EFO) 	Manned Ticket office machine shall be installed in the stations for selling tickets to the passengers. Also POM's shall be provided for Automatic Ticket Vending.
 Ticket reader/Add value Machine and portable ticket decoder. 	Ticket reader shall be installed near EFO for passengers to check information stored in the ticket. .This shall also be used as a Add Value Machine to allow passeneger to tap and add value to his card which has been topped up through internet.
UPS (uninterrupted power at stations as well as for OCC).	Common UPS of S&T system will be utilised.

0.13 DISABLED FRIENDLY FEATURES

The objective of making this chapter is to create a user-friendly mass transport system in India which can ensure accessibility to persons with disabilities, people travelling with small children or are carrying luggage, as well as people with temporary mobility problems (e.g. a leg in plaster) and the elderly persons.

The design standards for universal access to Public Transport Infrastructure including related facilities and services, information, etc. would benefit people using public transport.

The access standards given here are extracted from Indian Roads Congress Code, IRC 103: 2012, Guidelines for Pedestrian Facilities; Model Building Bye-Laws, 2011 and National Building Code, 2005. Central Public Works Department's (CPWD) "Space Standards for Barrier Free Built Environment for Disabled and Elderly Persons", 1998 and 2013 edition (under revision by MoUD), and international best practices / standards

Further, it has also been attempted to provide guidelines/ standards for alighting and boarding area, approach to station, car parking area, drop-off and pick-up areas, taxi/auto rickshaw stand, bus stand/stop, footpath (sidewalk), kerb ramp, road intersection, median/pedestrian refuge, traffic signals, subway and foot over bridge etc. to achieve a seamless development around metro

0.14 ENVIRONMENT IMPACT ASSESSMENT

0.14.1 Environmental Impacts

A total of 101 structures (74 in EW Corridor and 27 in NS Corridor) of various dimensions shall be affected by the proposed project. Majority of the structures are privately owned.

According to the results of the present study, it is found that about 337 trees are likely to be lost due to the project. Four trees have to be planted for each tree cut. Hence 1348 trees to be planted. These trees would have occupied about 96 ha in the forest. No no-forest land is available, hence 96 ha have to be re-afforested in degraded forests in or around Nagpur

Utility/Drainage Problems: The alignment will cross drains/nallahs large number of subsurface, surface and utility services, viz. sewer, water mains, storm water drains, telephone cables, overhead electrical transmission lines, electric pipes, traffic signals etc. These utilities/ services are essential and have to be maintained in working order during different stages of construction by temporary/permanent diversions or by supporting in position.

0.14.2 Positive Environmental Impacts

Employment Opportunities: Manpower will be needed in various activities during construction. In operation, about 45 persons per kilo meter length of the corridor, ie (approx. 1,700 persons) will be employed for operation and maintenance of the proposed system. Thus the project would provide substantial direct employment; besides, more people would be indirectly employed in allied activities and trades.

Enhancement of Economy: The construction of Nagpur Metro will facilitate the population to move from one end of the city to another. The proposed transport facility will facilitate rural population to move quickly towards urban centres and return there from. With the development of Nagpur Metro, it is likely that more people will be involved in trade, commerce and allied services.

Mobility: Metro lines will facilitate people to move quickly towards urban centres and return from there. Any reduction in number of private vehicles will results in reduction of accidents which will involve savings from damage to vehicles and savings towards medical and insurance expenses to persons involved in accidents.

Less Fuel Consumption: On implementation of the project both petrol and diesel consumption will get reduced due to shift of passengers from road to rail and also due to decongestion on road.

Less Air Pollution: With the construction of metro, there will be less vehicular traffic by road, and consequently less air pollution, and hence the air quality will improve.

Reduction in Traffic Congestion: Metro will reduce the congestion and journey time on roads because of diversion of some traffic to Metro. Reduction in traffic congestion will save the necessary capital investment and vehicle operating cost as well as increase in time saving per vehicle.

Environmental Management Plan: The project will provide higher living standard, better quality of life, less travel time, better connectivity and transport facilities. The management plans are essential to ensure that stress/ loads on the systems are within carrying capacity. The management plan aims at maintaining the environmental quality of project area minimal in pre-project stage. An environmental management strategy/ plans were developed to mitigate the adverse impacts

0.15 SECURITY MEASURES FOR A METRO SYSTEM

Metro is emerging as the most favoured mode of urban transportation system. The inherent characteristics of metro system make it an ideal target for terrorists and miscreants. Metro systems are typically open and dynamic systems which carry thousands of commuters. Moreover the high cost of infrastructure, its economic impotence, being the life line of city high news value, fear & panic and man casual ties poses greater threat to its security. Security is a relatively new challenge in the context of public transport. It addresses problems caused intentionally. Security differs from safety which addresses problems caused accidentally. Security problems or threats are caused by people whose actions aim to undermine or disturb the public transport system and/or to harm passengers or staff. These threats range from daily operational security problems such as disorder, vandalism and assault to the terrorist threat.

0.15.1 Necessity of Security

It is well known that public transportation is increasingly important for urban areas to prosper in the face of challenges such as reducing congestion and pollution. Therefore, security places an important role in helping public transport system to become the mode of choice. Therefore, excellence in security is a prerequisite for Metro system for increasing its market share. Metro railway administration must ensure that security model must keep pace rapid expansion of the metro and changing security scenario.

0.15.2 Three Pillars of Security

Security means protection of physical. Human and intellectual assets either from criminal interference, removal of destruction by terrorists or criminals or incidental to technological failures or natural hazardous events. There are three important pillars of security as mentioned under:

- (i) The human factor;
- (ii) Procedures; and
- (iii) Technology

0.16 DISASTER MANAGEMENT PLAN FOR A METRO RAIL SYSTEM

A disaster is a tragic event, be it natural or manmade, which brings sudden and immense agony to humanity and disrupts normal life. It causes large scale human suffering due to loss of life, loss of livelihood, damages to property and persons and also brings untold hardships. It may also cause destruction to infrastructure, buildings, communication channels essential services, etc.

0.16.1 Need for Disaster Management Measures

The effect of any disaster spread over in operational area of Delhi Metro is likely to be substantial as DMRC deals with thousands of passengers daily in underground tunnels, viaducts and stations. Disaster brings about sudden and immense misery to humanity and disrupts normal human life in its established social and economic patterns. It has the potential to cause large scale human suffering due to loss of life, loss of livelihood, damage to property, injury and hardship. It may also cause destruction or damage to infrastructure, buildings and communication channels of Metro. Therefore there is an urgent need to provide for an efficient disaster management plan.

0.16.2 Objectives:

The main objectives of this Disaster Management Measures are as follows:

- Save life and alleviate suffering.
- Provide help to stranded passengers and arrange their prompt evacuation.
- Instill a sense of security amongst all concerned by providing accurate information.
- Protect Metro Rail property.
- Expedite restoration of train operation.
- Lay down the actions required to be taken by staff in the event of a disaster in

• Delhi Metro Rail Corporation in order to ensure handling of crisis situation in coordinated manner.

To ensure that all officials who are responsible to deal with the situation are thoroughly conversant with their duties and responsibilities in advance. It is important that these officials and workers are adequately trained in anticipation to avoid any kind of confusion and chaos at the time of the actual situation and to enable them to discharge their responsibilities with alertness and promptness

0.17 MULTI MODAL TRANSPORT INTEGRATION

The Metro Transport Network in Nagpur will cover a length of approximately 39 kms. It will be augmented through enhanced flexibility of criss-cross interchanges to other modes and reduce the travel time of commuters. While Metro provides a high capacity corridor to carry the passengers, the need for integration of with other secondary/intermediate transport modes is getting highlighted more than ever to ensure a seamless transfer. This concept is to provide at least last mile or half mile connectivity to the commuters with in their places of stay. Accordingly top priority to this issue, MoUD has laid down policy guidelines to include the need and provisioning of all public, IPT and private modes in the DPRs for the Metro Systems. (Ref: MoUD (Urban Transport Wing) Advisory Circular no. K-14011/1/2007-UT-IV dated 30.08.2013)

The share of various modes of secondary/ intermediary modes of travel is complex and debatable issue which is dependent on a large number of variables like available road width, penetration in the residential areas, Road condition, distance from the existing Metro Stations, availability of parking and lay out and availability of circulating areas at the Metro Stations, Business centre or markets & existing traffic densities. These factors relate with each other and evolve with development of new modal mix of transport, infrastructure and changes with the passage of time. Even though for a given urban transport scenario, optimal mode share may be determined from computer based models but actual optimal mode share is never achievable on the road due to dynamic nature of demand and supply of transport modes

0.18 COST ESTIMATES

Cost estimates have been prepared based on the rates accepted for Delhi Metro duly escalated up to June 2012 level.

Corridor - 1: NORTH-SOUTH CORRIDOR (AUTOMOTIVE SQUARE TO KHAPRI)

The overall capital cost for Corridor 1: at June 2012 price level, works out to Rs. 3015 Crore, excluding taxes and duties, but including general charges & design charges @ 5% on all items except land and 3% contingencies on all items. Estimated total taxes & duties are Rs. 420Crore.

(Rs/Crore)

Corridor-2: EAST-WEST CORRIDOR (LOKMANYA NAGAR TO PRAJAPATI NAGAR)

The overall capital cost for Corridor-2: at June 2012 price level, works out to Rs. 2984 Crore excluding taxes and duties, but including general charges & design charges @ 5% on all items except land and 3% contingencies on all items. Estimated total taxes & duties are Rs. 443Crore.

0.19 FINANCING OPTIONS, FARE STRUCTURE AND FINANCIAL VIABILITY

0.19.1 The Nagpur Metro project- North South corridor (Automative Square to KHAPRI) and East West corridor (Prajapati Nagar to Lokmanya Nagar), covering a total route length of 38.215 Kms is proposed to be constructed with an estimated cost as per details are shown in **Table 0.20** below:-

Corridor No	Name of Corridor	Distance (KMs)	Estimated Cost without Central taxes at June-2012 Price Level	Estimated Cost with Central taxes at June-2012 Price Level	Completion Cost
I	North-South Corridor	19.658	3015.00	3435.00	8680
II	East-West Corridor	18.557	2984.00	3427.00	0000
	Total	38.215	5999.00	6862.00	

Table 0.20: Completion Cost

The estimated cost at June-2012 price level also includes an amount of Rs.40 Crore as one-time charges of security personal towards cost of weapons, barricades, and hand held and door detector machine etc. However, the recurring cost towards salary and allowances of security personal have not taken in to account in FIRR calculation

0.19.2 Financial Internal Rate of Return (FIRR)

The Financial Internal Rate of Return (FIRR) and costs for 30 years business model including construction period is **10.35%**.

0.19.3 Funding Pattern

The funding pattern has been worked out under two models viz., SPV model and BOT Model.

a) The proposed funding with Central Taxes assumed under the SPV model is placed in Table 0.21 as under: -

		(Rs/Crore)	
	With Taxes & Duties		
Particulars	Amount	% of	
	(Rs/Crore)	contribution	
Equity by GOI	1114.00	12.83%	
Equity by GOM	1114.00	12.83%	
SD by GOM to central Taxes (50%)	441.00	5.08%	
SD by GOI for Central Taxes (50%)	441.00	5.08%	
SD by GOM to StateTaxes	259.00	2.98%	
SD by GOM for Land	644.00	7.42%	
Nagpur Improvement Trust Contribution	421.00	4.85%	
Nagpur Municipal Corporation Contribution	421.00	4.85%	
JICA Loan @ 1.40% PA/Market Borrowing	3825.00	44.08%	
@12%	3625.00	44.00%	
Total	8680.00	100%	

Table 0.21: Funding pattern under SPV model

b) The proposed funding with Central Taxes assumed under the BOT model is placed in Table 0.22 as under: -

Table 0.22 Funding pattern under BOT model (with central taxes)

Particulars	Amount (Rs/Crore)	% of contribution
VGF by GOI	1555.40	20.00%
VGF by GOM	524.60	6.75%
Equity by Concessionaire	1899.00	24.42%
Concessionaire's debt @12% PA	3798.00	48.83%
Total	7777.00	100.00%
Land Free by GOM	644.00	
State Taxes by GOM	259.00	
IDC	445.00	
Total including IDC	9125.00	

xxxiii/xxxviii

0.19.4 Cost Investment Break Up

It is assumed that commercial operation shall start from April-2018. The Revenue Opening Date (ROD) has been assumed as 01.04.2018. The total completion costs duly escalated is shown in Finance Chapter, which has been taken as the initial investment. The cash flow of investments based on completion cost is in **Table 0.23** as below:

Financial Year	Cost at June 2012 Price Level	Completion Cost
2013-14	447.00	452.00
2014-15	944.00	1021.00
2015-16	1555.00	1874.00
2016-17	1865.00	2412.00
2017-18	1430.00	1983.00
2018-19	497.00	740.00
2019-20	124.00	198.00
Total	6862.00	8680.00

Table 0.23:	Year wise Investment-With Central Taxes
-------------	---

0.20 ECONOMIC ANALYSIS

0.20.1 The sources from where economic savings occur are identified first. Although there are many kinds of primary, secondary and tertiary benefits, only the quantifiable components can be taken to measure the benefits. These components are quantified by linking with the number of passengers shifted and the passenger km saved by the trips which are shifted from road/rail based modes to metro. It may be observed that first four benefit components given in Table 0.24 are direct benefits due to shifting of trips to metro, but other benefit components are due to decongestion effect on the road. Benefit components were first estimated applying market values then were converted into respective Economic values by using separate economic factors which are also given in Table 0.24. Depending upon methodology of estimation, economic factors are assumed. Overall economic value of benefit components is 90% of the market value. Similarly economic value of the cost components are 80% of the market cost.

		Economic
	Benefit Components	Factors
1	Construction Cost	80%
2	Maintenance Cost	80%
3	Annual Time Cost Saved by Metro Passengers	90%
4	Annual Fuel Cost Saved by Metro Passengers	90%

	Benefit Components	Economic Factors
5	Annual Vehicle Operating Cost Saved saved by Metro	
	Passengers	90%
6	Emission Saving Cost	100%
7	Accident Cost	100%
8	Annual Time Cost Saved by Road Passengers	90%
9	Annual Fuel Cost Saved by Road Passengers	90%
10	Annual Infra Structure Maintenance Cost	90%
11	Overall economic factor for the benefit components	93%

The project cost comprises capital cost, operation and maintenance cost including:

- Capital cost of infrastructure (civil engineering, land, track, power supply, traction system, signaling and telecommunications, etc.) and rolling stock.
- Operating cost of metro

The benefit stream that has been evaluated and quantified includes:

- Capital and operating cost (on present congestion norms) of carrying the total volume of passenger traffic by existing bus system and private vehicles in case metro project is not taken up.
- Savings in operating costs of all buses and other vehicles due to de-congestion including those that would continue to use the existing transport network even after the metro is introduced.
- Savings in time of commuters using the metro over the existing transport modes because of faster speed of metro.
- Savings in time of those passengers continuing on existing modes, because of reduced congestion on roads.
- Savings on account of prevention of accidents and pollution with introduction of metro.
- Savings in road infrastructure and development costs that would be required to cater to increase in traffic, in case metro is not introduced.
- Savings in fuel consumption on account of less number of vehicles on road and decongestion effect with introduction of metro are included in those of vehicle operating cost.

The Economic Internal Rate of Return (EIRR) in worked out as 17.70% for this project.

0.21 IMPLEMENTATION STRATEGY AND PROJECT IMPLEMENTATION

0.21.1 To ensure that the project is implemented as targeted in this report it has to get the visible positive support from Nagpur Administration, GoM and GoI. To enable Nagpur metro project to be implemented without any loss of time and cost over-run, effective institutional arrangements would need to be set up. Presently, Nagpur Improvement Trust (NIT) is dealing with this Project but there is need to have an SPV responsible entirely for this project.

0.21.2 Special Purpose Vehicle

Special Purpose Vehicle (SPV) is a legal entity established for implementation of specific projects and is used to isolate the governing authority / stakeholder company from operational and financial risk. SPV has a management dedicated to the accomplishment of the specific objective. The SPV also allows securitization of assets without disturbing the managerial relationship. Under the arrangement, any predictable income stream generated by secure assets can be securitized. Three models have been analyzed and summarized below:-

a) Implementation through Government

Under this model, the entire project development, implementation and operation is undertaken and financed by the government authority. Some recent examples of metro rail projects implemented directly through Government agencies are as under.

- Delhi
- Bangalore
- Chennai
- Jaipur
- Kolkata

b) Implementation through BOT model

BOT approach assumes that the metro is given to a private partner (Concessionaire) to develop and operate over the concession period. The private partner brings requisite funds and the efficiency of private sector management in the implementation as well as operation of the project. NMRC's role in this option is limited to that of a regulatory authority. Thus NMRC would monitor the implementation of the project such as laying down the passengers fares, targets for the minimum number of services to be run by the private partner, frequency, punctuality and reliability of these services, etc. There are only two projects namely Hyderabad and Mumbai being implemented through BOT model. The success of this model in India is still to be known.

c) Implementation through PPP model

Under this mode, the government entity undertakes all civil works and the associated station work, while all other works like rolling stock, signaling and telecom, track laying work are undertaken by the private partner along with management of the metro service over the concession period. This enables the client to monitor and adhere to quality and construction timelines for the project in a better way. Implementation of airport express line in Delhi is the only example of this model in India.

d) Proposed Implementation Model

Due to very low FIRR and uncertainties of getting the agencies for taking up this work on BOT/PPP model, it is proposed that implementation of Nagpur Metro should be done on DMRC/BMRC model.

0.19 CONCLUSIONS AND RECOMMENDATIONS

- i) It has been established that a Light Capacity Metro System (MRTS) with carrying capacity of about 25,000 PHPDT would be adequate to meet not only the present traffic demand but also cater to the demand for the next 30 years.
- ii) After examining the various options for execution of Nagpur Metro Rail Project, it is recommended that the project be implemented through government funding, Implementing through an SPV namely "Nagpur Metro Rail Corporation (NMRC)" registered under the Companies Act, 1956. This SPV should be a PSU of GoM and Gol. After the approval of State Government, DPR to be sent to the Secretary, Ministry of Urban Development, Government of India, advising GOI of the State Government's intention to take up the Project on government funding basis and requesting for the latter's "In Principle" clearance to go ahead with the Project.

Key plan of Nagpur Metro is shown in Fig-0.1

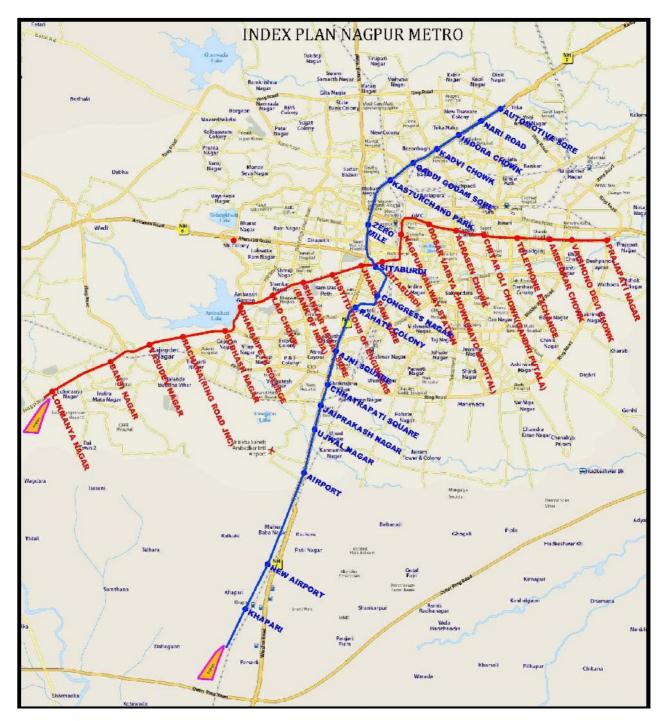


FIG : 0.1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

- 1.1.1 FACTS ABOUT NAGPUR
- 1.1.2 DEMOGRAPHICS
- 1.1.3 VEHICLE POPULATION IN NAGPUR CITY
- 1.1.4 RAIL AND AIR TRANSPORT IN NAGPUR CITY
- 1.1.5 POINTS FROM OTHER FEASIBILITY SURVEY DONE FOR NAGPUR
- 1.1.6 ALIGNMENTS PROPOSED BY DMRC

1.2 STRUCTURE OF THE PROJECT REPORT

TABLES

TABLE 1.1 A	CENSUS INDIA, POPULATION OF NAGPUR CITY IN 2011
TABLE 1.1 B	CENSUS INDIA, POPULATION OF NAGPUR METROPOLITAN IN 2011
TABLE 1.1 C	POPULATION GROWTH RATE OF NAGPUR CITY FOR LAST FIVE DECADES
TABLE 1.2	MOTOR VEHICLES POPULATION ON ROAD IN NAGPUR CITY
TABLE 1.3	RIDERSHIP ESTIMATION FOR VARIOUS ALIGNMENTS
	(BASED ON THE STUDY DONE BY L&T-RAMBOLL CONSULTING ENGINEERS LIMITED)
TABLE 1.4	ALIGNMENT PROPOSED BY DMRC
TABLE 1.5	FINAL ALIGNMENT

FIGURES

FIG. 1.1	INDEX PLAN OF THE PROPOSED NAGPUR METRO RAIL
FIG. 1.2	ALIGNMENT-1 OF MRTS CORRIDORS PROPOSED BY L&T-RAMBOLL CONSULTING
	ENGINEERS LIMITED
FIG. 1.3	ALIGNMENT-2 OF MRTS CORRIDORS PROPOSED BY L&T-RAMBOLL CONSULTING
	ENGINEERS LIMITED
FIG. 1.4	ALIGNMENT-3 OF MRTS CORRIDORS PROPOSED BY L&T-RAMBOLL CONSULTING
	ENGINEERS LIMITED
FIG. 1.5	ALIGNMENT-4 OF MRTS CORRIDORS PROPOSED BY L&T-RAMBOLL CONSULTING
	ENGINEERS LIMITED

CHAPTER-1

INTRODUCTION

1.1 BACKGROUND

1.1.1 FACTS ABOUT NAGPUR

Nagpur is the third largest city of Maharashtra and also the winter capital of the state. With a population of approximately 25 lakhs, Nagpur Metropolitan Area is the 13th largest urban conglomeration in India. It has also recently been ranked as the cleanest city and the second greenest city of India. In addition to being the seat of annual winter session of Maharashtra state assembly "Vidhan Sabha", Nagpur is also a major commercial and political center of the Vidarbha region, It is also known as "Orange City" for being a major trade center of oranges that are cultivated in the region.

Nagpur lies precisely at the center of the country with the Zero Mile Marker indicating the geographical center of India. The city was founded by the Gonds but later became part of the Maratha Empire under the Bhonsles. The British East India Company took over Nagpur in the 19th century and made it the capital of the Central Provinces and Berar. After the first reorganisation of states, the city lost its capital status but according to the informal "Nagpur Pact" between political leaders, it was made the second capital of Maharashtra. **Nagpur** is also declared, "Tiger Capital of India " as it connects many Tiger Reserves in India to the world.

Etymology

The Nag River, a tributary of the Kanhan River, flows in a serpentine path and is therefore named "Nag", the Marathi word for snake. And hence, the river and city is named as Nagpur. During British times the city used to be referred to as Nagpore. While others says that the river flows through the old city of Nagpur and hence the city is named after this river. "Pur" is a common suffix given to cities, villages and towns across India, and is often simply translated "city". The seal of Nagpur Municipal Corporation depicts a cobra in the water of a river

Geography and Climate

Geography

Nagpur lies on the Deccan plateau of the Indian Peninsula and has a mean altitude of 310.5 meters above sea level. The underlying rock strata are covered with alluvial deposits resulting from the flood plain of the Kanhan River. In some places these give rise to granular sandy soil. In low lying areas which are poorly drained, the soil is alluvial clay with poor permeability characteristics. In the eastern part of city crystalline metamorphic rocks such as gneiss, schist and granites are found, while in the northern part yellowish sand stones and clays of the lower Gondwana formations are found.

Nagpur city is dotted with natural and man-made lakes with Ambazari lake being the largest. Other natural lakes include Gorewada Lake and Telangkhedi lake. Sonegaon lake and Gandhisagar lake are man-made lakes created by the city's historical rulers. Nag river, Pilli nadi along with nallas form the natural drainage pattern for the city. Nagpur is known for its greenery, and was judged as the cleanest and second greenest in India after Chandigarh.. Recently, Government of India selected Nagpur as a Model City for *National Clean Air Mission* by allocating 25 crores for the plan. This project will be handled by Nagpur's own NEERI (National Environmental Engineering Research Institute).

Climate

As it is located at centre of Indian peninsula far from the Bay of Bengal and the Arabian Sea, Nagpur has a tropical wet and dry climate with dry conditions prevailing for most of the year. It receives an annual rainfall of 1,205 mm (47.44 in) from monsoon rains during June to September. The highest recorded rainfall was 304 mm on 14 July 1994. Summers are extremely hot lasting from March to June, with maximum temperatures occurring in May. Winter lasts from November to January, during which temperatures can drop below 10 °C (50 °F). The highest ever recorded temperature in the city is 49°C, while the lowest is 3°C.

1.1.2 DEMOGRAPHICS

As per provisional reports of Census India, population of Nagpur in 2011 is 2,405,421; of which male and female are 1,226,610 and 1,178,811 respectively. Although Nagpur city has population of 2,405,421; its urban UA / metropolitan population is 2,497,777 of which 1,275,750 are males and 1,222,027 are females¹. Details of population of Nagpur city and Nagpur Metropolitan Area are given in Table 1.1 A, 1.1B

¹ <u>http://www.census2011.co.in/census/city/353-nagpur.html</u>

Nagpur City	Total	Male	Female	
Population	2,405,421	1,226,610	1,178,811	
Literates	2,018,598	1,060,359	958,239	
Children (0-6)	237,865	123,851	114,014	
Average Literacy (%)	93.13	96.16	89.99	
Sex ratio	961			
Child Sex ratio	921			

Table 1.1 A :Census India, population of Nagpur City in 2011

Table 1.1 B :Census India, population of Nagpur Metropolitan in 2011
--

Nagpur Metropolitan	Total	Male	Female
Population	2,497,777	1,275,750	1,222,027
Literates	2,095,419	1,102,638	992,781
Children (0-6)	248,678	129,522	119,156
Average Literacy (%)	93.17	96.20	90.02
Sex ratio	958		
Child Sex ratio	920		

The population growth rate of Nagpur City for last five decades is given in Table 1.1 C below :

Table-1.	1 C
----------	-----

Year	Population Nagpur City	Growth Rate (%)
1971	866000	34
1981	1217000	40
1991	1622818	34
2001	2051320	26
2011	2405421	17

1.1.3 VEHICLE POPULATION IN NAGPUR CITY (As per Motor Transport Statistics of Maharashtra)

Motor Vehicles Population on Road as on 31st March, 2011 & 31st March, 2012 in Nagpur City are as below :

S.No.	Category	31st March, 2011	31st March, 2012
1	Motor Cycles	390102	429837
2	Scooters	293926	318999
3	Mopeds	283810	283771
TOTAL	OF TWO WHEELERS	967838	1032607
4	Motor Cars	89479	99233
5	Jeeps	28244	29727
6	Station Wagons	842	842
7(A)	Taxi meter fitted	0	0
7(B)	Taxi Tourist Cabs	2661	2907
8	Autorickshaws	16417	17149
9	Stage Carriages	1741	1741
10	Contract Carriages	735	899
11	School Buses	575	615
12	Private Service Vehicles	1307	1314
13	Ambulances	525	567
14	Arti. & Multi.Veh.	896	925
15	Trucks & Lorries	12658	13024
16	Tankers	2275	2532
17	Delivery Van (4 Wheelers)	12879	14183
18	Delivery Van (3 wheelers)	6161	6844
19	Tractors	5385	5402
20	Trailers	5263	5348
21	Others.	1153	1240
TOTAL	OF ALL TYPES	1157034	1237099

Table-1.2*
Motor Vehicles Population in Nagpur City

*RTO Nagpur figures

1.1.4 RAIL AND AIR TRANSPORT IN NAGPUR CITY

A total of 160 trains from various destinations hault at Nagpur. These include various passenger, express, mail, Duronto, Rajdhani, Garib Rath trains. Of these 26 terminate/originate from Nagpur. Almost 1.5 lakh passengers board/alight daily at different stations in Nagpur. Of which Nagpur Central Station alone is used by approximately 100,000 passengers. Ajani, Itwari and Kalamana are other important railway stations within Nagpur. Nagpur Central is mainly used for long distance travel, whereas Ajini, Itwari station are used for commuting nearby areas such as Butibori,

Ramtek etc. The city is the Divisional Head Quarters for the Central Railway and South East Central Railway Zone of Indian Railways.

The Airport handles around 4,000 passengers per day and caters to 6 Domestic Airlines connecting Nagpur to 12 domestic destinations including Mumbai, Delhi, Pune, Kolkata, Hyderabad, Raipur etc and a few (connecting flights) International Airline to Singapore etc.

1.1.5 POINTS FROM OTHER FEASIBILITY SURVEY DONE FOR NAGPUR

- 1.1.5.1 The Nagpur Municipal Corporation (NMC) had awarded the project titled "Preparation of Master Plan/Perspective Plan for Transportation System of Nagpur City 2031" to L&T-Ramboll Consulting Engineers Limited in June 2007. The study aims to update the long-term transportation strategy for NMC and identify a practicable and effective investment programme up to 2031. Consultants commenced the study in the month of June,2007 and completed in June,2008. L&T Ramboll Consulting Engineers Limited had carried out the Comprehensive Traffic and Transportation Study and prepared Transportation Master Plan for Nagpur city commissioned by NMC. As a part of study consultants had
 - 1. Reviewed all the relevant secondary data related to landuse, travel pattern and demographics, supply of transport infrastructure and road safety etc.Major traffic generators such as MIHAN (Multi-modal International Cargo Hub and Airport at Nagpur), Industrial Areas such as Butibori and Higna etc were taken into account to forecast future population and employment.
 - 2. Conducted primary traffic surveys including household surveys (2% of sample households)
 - **3.** Developed Travel demand models using the TRIPS/CUBE Software and validated for the base year and using the validated software forecasted travel demand for 2011,2021 and 2031 for two scenarios (do nothing) and do something (improved public transportation scenario)
 - 4. Based on the outputs of travel demand models and studying the availability of present transportation infrastructure consultants have recommended short term, medium term and long term improvement proposals to be implemented from 2009-2031.

1.1.5.2 Salient Features of Nagpur Current Traffic and Transportation Scenario (L&T-Ramboll study):

- Nagpur is the second capital of Maharashtra and is located in the geo-graphical centre of India with good road and rail network.
- Nagpur acts as transhipment place for areas like Chattisgarh and Eastern Maharashtra
- 2008 population of NMC as 24.47 lakhs and average density as 112 pph. (as per report)

- Main public transport providers are MSRTC,BOT bus operator (Star Bus).
- Poor public transportation system (less than 5% of the total trips).
- Non-motorised modes walk and bicycle constitutes 58% of total trips.
- Motorised transport is dominated by two wheelers (28%).
- Predominant on-street parking and absence of off-street parking facilities.
- Current Vehicle Ownership is 11.57 lakh in which 9.67 lakhs are two wheelers.
- Poor mobility in some of the areas such as Itwari.
- Absence of truck terminals as Nagpur is proposed as future Road Cargo hub.
- Development of Multi-Modal Hub Airport in Nagpur (MIHAN) in 4354 hectares is underway.

1.1.5.3 Some of the important findings of the L&T-Ramboll study are as follows :

- Forecasted population of NMC by for 2021 and 2031 is 35.4 lakhs and 46.7 lakhs respectively.
- Forecasted Employment of NMC by for 2021 and 2031 is 12.4 lakhs and 16.8 lakhs respectively.
- MIHAN is going to generate around 2.6 lakhs employment by 2015 (fully operational) and 4.3 lakhs by 2031.
- Total trips made by the residents of Nagpur in 2007 is 25.57 lakhs (without intra-zonal) and expected to increase to 55 lakhs by 2031.

1.1.5.4 Transportation Improvement proposals (L&T-Ramboll study) are broadly classified into three categories based on the time horizon:

- Short Term Improvement Proposals (2008-2009)
- Medium Term Improvement Proposals (2009-2021)
- Phase-I (2009-2011)
- Phase-II (2012-2016)
- Phase-II (2017-2021)
- Long Term Improvement Proposals (2022-2031

1.1.5.5 Some of the important proposals recommended by L&T-Ramboll Consulting Engineers Limited are:

- Improved bus system with a fleet comprising of Standard buses and Mini-buses. Standard buses will serve the major corridors whereas mini-bus services act as a feeder services and low demand corridors. In Short term (with in a year) fleet size of 275 buses (225 Standard buses and 50 mini buses) needs to be deployed to serve 2.5 lakhs passengers per day. In medium term (with 2 to 3 years) 500 buses needs to be deployed to serve 5 lakh passengers/day.In long term say by 2016, 750 buses needs to be deployed to serve 7.5 lakhs passengers/day.Coverage Area of Buses should be improved to 90% (At present it is less than 40%).
- Improved pedestrian facilities with min 2.5 m footpaths and FOBs/Subways.
- Bicycle lanes on pilot basis on several wide roads.

- Off-street parking facilities near important areas such as commercial areas, office areas, special generators such as religious places etc on PPP model especially in Sitabuldi, Sadar areas, transport terminals and at Ganeshpeth bus terminal.
- Construction of ROBs/RUBs/Bridges across rivers/flyovers.
- Development of Inner-Circle ring road and Alternative-north-South corridor to take predominately north-south demand.
- Improvement of Radial Roads such as Wardha Road to 6-lane configuration from existing 4-lane configuration by 2016.
- Inner Ring Road to be improved to 6-lane configuration with service road by 2016.
- Outer ring road to be planned after 2016.It will be funded by State and Central Governments.
- Construction of MRTS in phases 2012-16 and 2017-2021. It is envisaged 65 km of MRTS and 20 km commuter rail by 2031.
- Development of truck terminals at four places on PPP basis at Inner /Outer Ring Road.
- Creation of public transport infrastructure bus terminals/depots/bus procurement etc.
- Environment friendly policies such as use of CNG, favourable policies for public transport, more conducive environment for walking and bicycles.
- Development of Bus Terminals/Transport Terminals at Outer ring road.
- Additional BRTS/ MRTS Corridors in long term.
- Road Corridor parallel to Railway line to serve north-south traffic (feasibility to be ascertained).
- Development of Commuter rail system from Nagpur city to Butibori on the similar lines of Multi Modal Transport System (MMTS) in Hyderabad.
- Itwari Area redevelopment.

1.1.5.6 MRTS Corridors Proposed by L&T-Ramboll Consulting Engineers Limited

Several corridors of MRTS were studied and presented by L&T-Ramboll Consulting Engineers Limited. in their report.

Four different MRTS options were considered. The description of each alignment was presented in Chapter 4 of their report. Four different MRTS alignment options considered are :

Alignment-1 : Pardi Naka to Dahegoan (24.54 km with 25 Stations). The alignment option -1 starts at Pardi Naka and ends at Dahegaon. It passes through Central Avenue road, Central railway station, Ganeshpet Bus stand, Medical Chowk, Manewada Jn etc. **(Fig :1.2)**

Alignment-2: Automotive Square to Dahegoan (23.94 km with 24 Stations) The alignment option -2 is starts at Automotive Square and ends at Dahegaon. It

passes through Kamptee road, Itwari railway station, Central Avenue road, Medical Chowk, Manewada Jn etc., **(Fig :1.3)**

Alignment-3 : Transport Plaza to Dahegoan predominantly on NH-7 (27.2 km with 26 Stations) The alignment option 3 starts at Automotive Square and ends at Dahegaon. It passes through Indora, LIC Square, Kasthurichand Park, Central railway station, Zero mile, Sitabuldi, NEERI, Chatrapathi Square, Manewada Jn etc. (Fig :1.4)

Alignment-4 : Transport Plaza to Dahegoan partially on NH-7 (24.2 km with 24 Stations) The alignment option 4 starts at Transport Plaza and ends at Dahegaon. This alignment option is combination of options 2 &3. It passes through Mahendra Nagar, Indora, Gaddigodam, Central railway station, CBS1 Depot, Medical Chowk, Manewada Jn etc. (Fig :1.5)

1.1.5.7 From the study done by L&T-Ramboll Consulting Engineers Limited : Ridership for four MRTS alignments are worked out and presented in Table below. It can be observed that Alignment –3 is giving highest ridership compared to other three options. The ridership estimation for option 3 is 1.18 lakhs in 2011.

Table:1.3 Ridership Estimation for various Alignments

			T	
Year	Alignment - 1	Alignment - 2	Alignment - 3	Alignment - 4
2011	118495	109993	177289	131347
2021	230652	196801	335348	218613
2031	325746	278849	468172	311738

(Based on the study done by L&T-Ramboll Consulting Engineers Limited)

1.1.6 ALIGNMENTS PROPOSED BY DMRC IN JULY-2013 DPR

In early 2012 Nagpur Improvement Trust (NIT) requested DMRC to provide Consultancy services for preparation of a Detailed Project Report for Metro Rail System in Nagpur, Maharashtra initially for 30 Km which was revised to 42 Km in July 2012. Thereafter, DMRC has conducted Traffic Surveys, Topographical Surveys, Geotechnical Investigations and Environment Impact Assessment Survey.

Based on the different types of surveys done by DMRC, metro alignments has been finalized after repeated inspection of the road network, intersections, passenger traffic flow, traffic congestion, connectivity to important landuses.

Alignment of routes proposed by DMRC were as follows

Alignment	iment Detail Route	
Alignment-1 North-South Corridor (21.833 km, 17 Stations)	Automotive Square, along Kamptee Road, Wardha Road, Variety Square to Abhyankar Road, along Nag River alignment will fall on Humpyard Road, Rahate Colony Road, Wardha Road, Khamla Road, Airport, MIHAN Area	
Alignment-2 East – West Corridor (18.266 km, 19 Stations)	From Prajapati Nagar, along Central Avenue Road, Railway Feeder Road, Munje Chowk, Jhansi Ranee Chowk, North Ambajhari Road, Hingna Road, Lokmanya Nagar	

Table 1.4 Alignment Proposed by DMRC

1.2 FINAL ALIGNMENT FOR NAGPUR METRO

On 03.08.2013, a meeting presided by Shri S K Lohia, JS-MoUD,GoI was held at Nagpur to discuss the DPR. In that meeting, JS-MoUD,GoI expressed that the FIRR of the project should be at least 8%. Recently, MoUD has also issued advisory that FIRR of Metro Project should not be below 8%.

On 1.10.2013, a presentation on the DPR was made by M/s NIT to The Chief Minister, Government of Maharashtra. He was of the opinion to avoid underground alignment in MIHAN and also construct Maintenance Depot in the land belonging to State Govt Land. Subsequently, on 21.10.2013, a joint inspection of the NS corridor was done by VC&MD-MADC, Chairman-NIT, and Director Business Development-DMRC.

The original alignment of Corridor-I proposed was passing through Khamla Road, Airport Area after Sahakar Nagar and finally was ending at MIHAN. The alignment up to Old Airport Station was elevated, then for a length of 3.30 km, it was underground with one underground station named as New Airport Station and again elevated in MIHAN Area. Since the cost of underground section of the alignment is much more than the elevated section or the section at grade, alternative alignment was suggested for cost reduction, enhancement in PHPDT and to increase FIRR so that project becomes financially and economically viable.

The new proposed alignment suggested in the above inspection, was to pass through a 24m wide road adjacent to London Street after Sehkar Nagar Junction and was proposed to be taken to the east along 24m wide road and London Street up to Wardha Road. From the intersection at Wardha road, the elevated alignment was proposed to be on the central divider on the Wardha Road. After crossing existing intersection point of Wardha Road & Airport Road, the alignment was to be shifted to the MIHAN area. Alignment in this portion was proposed to be at grade and to run parallel to Wardha road upto ROB and abuting railway line thereafter up-to proposed Car depot.

But, while working on this modification of alignment, it was noticed that a very large number of properties were falling along the alignment due to sharp curve at the junction of Sahakar Nagar & 24 m wide road and also at the junction of 24m wide road & Wardha Road. Acquiring of these properties will be very tough and may delay the whole project.

Hence to avoid all such situation, it has been decided to take the alignment on Wardha Road only without going on Khamla Road.

Finally, NS Corridor will pass through Wardha Road after Congress Nagar Metro Station. After crossing existing intersection point of Wardha Road & Airport Road, the alignment will be shifted to the MIHAN area. Alignment in this portion will be at grade and will run parallel to Wardha road upto ROB and parallel to railway line thereafter up-to proposed Car depot. 14m wide stretch of land between the railway boundary line and the road near proposed Container Depot of Container Corporation of India Ltd. will be affected by this proposed alignment of the Metro Rail as the proposed alignment passes through this stretch of land. 73 Ha land is available on the west side of railway line and south of existing flyover near khapari station. Average width of this land is about 80m and is about 1800m long. This MADC land may be utilized for Car Depot. Similarly, Depot of EW Corridor has also been shifted to SRP Land near proposed Lokmanya Nagar Metro Station.

This has caused deletion of few earlier proposed metro stations on NS Corridor and addition of new stations on the same.

Final alignment for both the corridors is as below :

Alignment	Detail Route		
Alignment-1 North-South Corridor (19.658 km, 17 Stations)	Automotive Square, along Kamptee Road, Wardha Road, Variety Square to Abhyankar Road, along Nag River alignment will fall on Humpyard Road, Rahate Colony Road, Wardha Road, Parallel to Railway Line, Khapri Station and finally in MIHAN Area near concor depot		
Alignment-2 East – West Corridor (18.557 km, 19 Stations)	From Prajapati Nagar, along Central Avenue Road, Railway Feeder Road, Munje Chowk, Jhansi Ranee Chowk, North Ambajhari Road, Hingna Road, Lokmanya Nagar		

Table 1.5 FINAL ALIGNMENT

Index Plan of the Proposed Nagpur Metro Rail is put up at Fig. No. 1.1

1.3 THE STRUCTURE OF THE DETAILED PROJECT REPORT

The report contains the chapters as mentioned below :-

CHAPTER NO.	DESCRIPTION
Chapter-1	Introduction
Chapter-2	Traffic Demand Forecast
Chapter-3	System Selection
Chapter-4	Geometric Designing Parameters & Alignment Description
Chapter-5	Civil Engineering
Chapter-6	Station Planning
Chapter-7	Train Operation Plan
Chapter-8	Rolling Stock
Chapter-9	Power Supply, System Of Traction And Power Tariff
Chapter-10	Maintenance Depot
Chapter-11	Signalling System
Chapter-12	Telecommunication & Automatic Fare Collection
Chapter-13	Disabled Friendly Features
Chapter-14	Environmental Impact Assessment
Chapter-15	Security Measures for a Metro System
Chapter-16	Disaster Management Plan for a Metro Rail System
Chapter-17	Multi Modal Transport Integration
Chapter-18	Cost Estimates
Chapter-19	Financing Options, Fare Structure And Financial Viability
Chapter-20	Economic Appraisal
Chapter-21	Implementation Strategy
Chapter-22	Conclusion

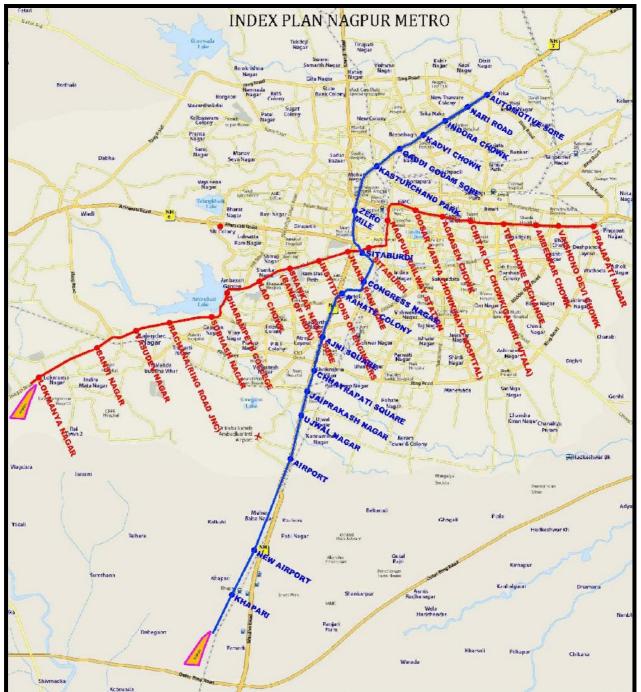


Fig : 1.1 Index Plan of the Proposed Nagpur Metro Rail

Fig:1.2 Alignment-1 of MRTS Corridors Proposed by L&T-Ramboll Consulting Engineers Limited

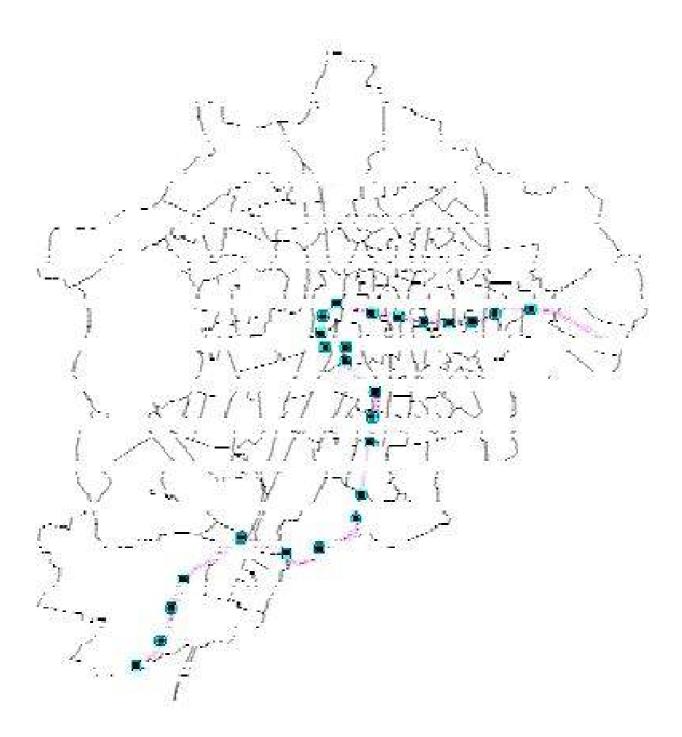


Fig :1.3 Alignment-2 of MRTS Corridors Proposed by L&T-Ramboll Consulting Engineers Limited

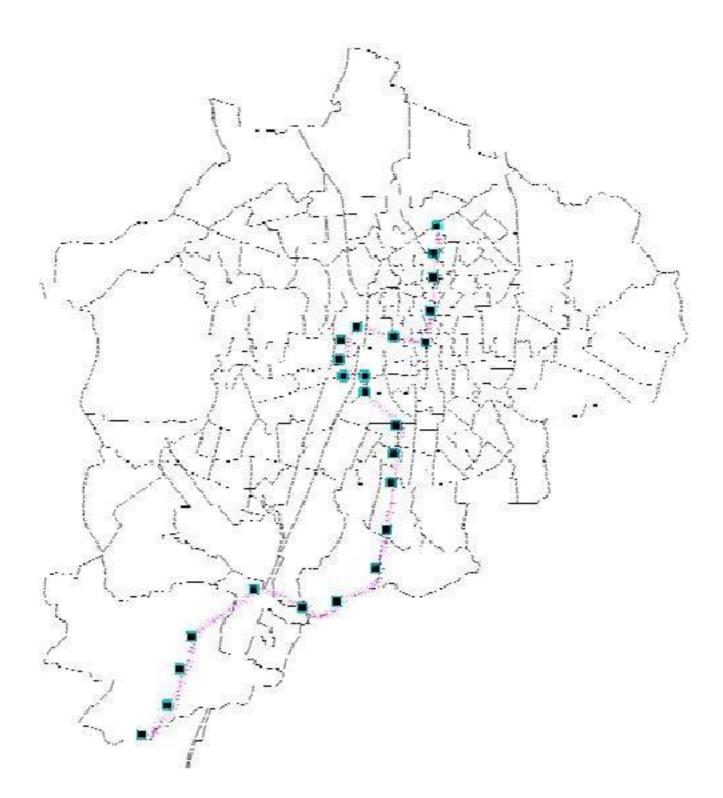


Fig :1.4 Alignment-3 of MRTS Corridors Proposed by L&T-Ramboll Consulting Engineers Limited

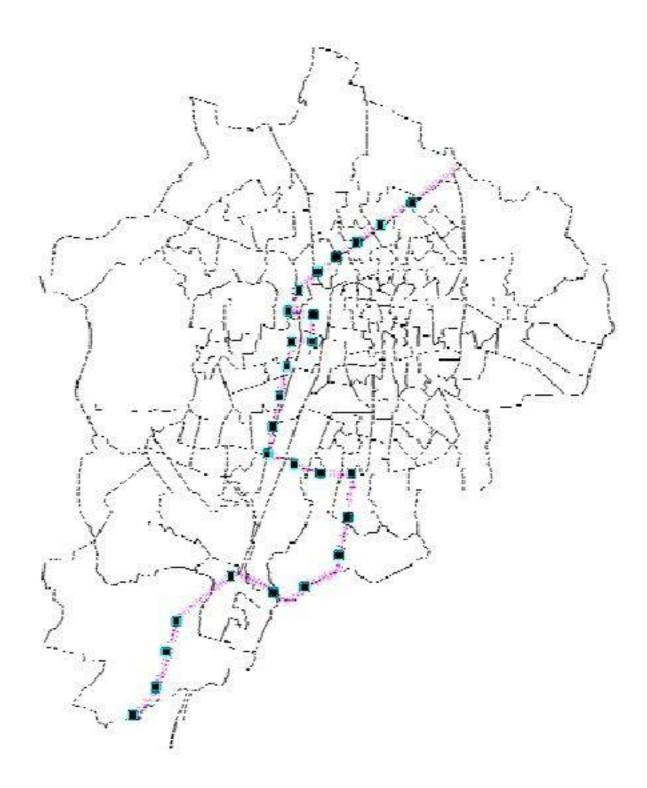
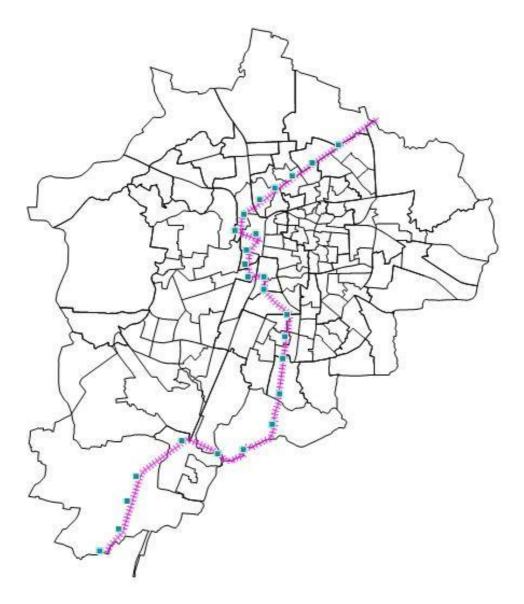



Fig :1.5 Alignment-4 of MRTS Corridors Proposed by L&T-Ramboll Consulting Engineers Limited

CHAPTER 2

TRAFFIC DEMAND FORECAST

- 2.1 INTRODUCTION
- 2.2 POPULATION OF NAGPUR
- 2.3 ECONOMY OF NAGPUR
- 2.4 CARGO HUB AND AIRPORT AT NAGPUR (MIHAN)
- 2.5 TRAFFIC VOLUME COUNT (TVC) AND PASSENGER OCCUPANCY SURVEYS (OCS)
- 2.6 MODE SHARE
- 2.7 TERMINAL SURVEY RESULTS
- 2.8 TERMINAL PASSENGER INTERVIEW
- 2.9 WORK PLACE SURVEY
- 2.10 INTERVIEW OF WORKERS
- 2.11 TRIP FORECASTING USING TRAFFIC MOLELS
- 2.12 TRIP ENDS ESTIMATION
- 2.13 TRIP DISTRIBUTION
- 2.14 MODAL SPLIT
- 2.15 SIMULTANEOUS MODAL SPLIT AND DISTRIBUTION
- 2.16 TRIP ASSIGNMENT
- 2.17 DAILY RIDERSHIP ESTIMATION
- 2.18 NAGPUR METRO ALIGNMENT PLAN
- 2.19 SUMMARY OUTPUT
- 2.20 DAILY RIDERSHIP
- 2.21 MORE ABOUT MIHAN
- 2.22 EFFECT OF MIHAN ON PROPOSED METRO RIDERSHIP
- 2.23 FURTHER DEVELOPMENTS
- 2.24 ESTIMATION OF RIDERSHIP FOR FINAL ALIGNMENTS
- 2.25 DAY BOARDING AND PHPDT

TABLES

- TABLE 2.1ACENSUS INDIA, POPULATION OF NAGPUR CITY IN 2011
- TABLE 2-18 CENSUS INDIA, POPULATION OF NAGPUR METROPOLITAN IN 2011
- TABLE 2.2VEHICULAR TRAFFIC DETAILS AT 40 DIFFERENT LOCATIONS NAGPUR
- TABLE 2.3 FAST MODE PASSENGER DETAILS AT 40 DIFFERENT LOCATIONS NAGPUR
- TABLE 2.4 PEAK HOUR DETAILS AT 40 DIFFERENT LOCATIONS NAGPUR
- TABLE 2.5A TRAFFIC FLOW IN PCU ON NORTH--->SOUTH DIRECTION
- TABLE 2.5B
 TRAFFIC FLOW IN PCU ON EAST--->WEST DIRECTION
- TABLE 2.6 PASSENGER MODAL SPLIT ON THE ROADS INCLUDING EXTERNAL PASSENGERS
- TABLE 2.7 EXTERNAL TRIPS OF NAGPUR CITY
- TABLE 2.8
 HOURLY VARIATION OF TRAFFIC FOR NAGPUR RAILWAY STATION
- TABLE 2.9
 HOURLY VARIATION OF TRAFFIC FOR AJNI & ITWARI RAILWAY STATION
- TABLE 2.10MODE USED BY EXTERNAL PASSENGERS
- TABLE 2.11FREQUENCY OF TRIPS MADE BY EXTERNAL PASSENGERS
- TABLE 2.12OCCUPATION OF EXTERNAL PASSENGERS
- TABLE 2.13PURPOSE WISE EXTERNAL TRIPS

- TABLE 2.17TRIP LENGTH FREQUENCY OF WORKERS
- TABLE 2.18 MONTHLY INCOME OF WORKERS
- TABLE 2.19 MODE USED BY THE WORKERS
- TABLE 2.20 POPULATION GROWTH AND TRIP PRODUCTION IN LAKHS DURING DIFFERENT HORIZON YEARS
- TABLE 2.21 UTILITY MODEL INPUTS
- TABLE 2.22 SUMMARY OUTPUT(1)
- TABLE 2.23 SUMMARY OUTPUT(2)
- TABLE 2.24 SUMMARY OUTPUT(3)
- TABLE 2.25ADAY BOARDING ON LÍNE 1 FROM AUTOMATIVE TO MIHAN
- TABLE 2.25BDAY BOARDING ON LINE 2 FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR
- TABLE 2.26PEAK HOUR BOARDING ON LINE 1 AND LINE 2
- TABLE 2.27PHPDT LINK LOAD ON LINE 1 FROM AUTOMATIVE TO MIHAN
- TABLE 2.28PHPDT LINK LOAD ON LINE 2 FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR
- TABLE 2.29 EXPECTED POPULATION AND EMPLOYMENT IN MIHAN
- TABLE 2.30 RIDERSHIP FROM MIHAN STATIONS
- TABLE 2.31 NAGPUR METRO RAIL PROJECT NS CORRIDOR
- TABLE 2.32 SUMMERY OF RIDERSHIP ON LINE 1 AND LINE 2
- TABLE 2.33 DAY BOARDING ON LINE 1 AND LINE 2 STATIONS
- TABLE 2.34 LINE 1 PHPDT FROM AUTOMATIVE TO KHAPRI
- TABLE 2.35LINE 2 PHPDT FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR
- TABLE 2.36 COMPARISON OF SALIENT FEATURES BETWEEN TWO ALTERNATIVES (YEAR 2021)

FIGURES

- FIG.2.1 ZERO MILE NAGPUR, IS THE GEOGRAPHICAL CENTER OF INDIA
- FIG.2.2 BUILDINGS UNDER CONSTRUCTION MIHAN
- FIG.2.3 MIHAN ADMINISTRATIVE OFFICE
- FIG.2.4 TVC POINTS IN NAGPUR
- FIG.2.5 NORTH-SOUTH DIRECTIONAL FLOW (PCU)
- FIG.2.6 EAST-WEST DIRECTIONAL FLOW (PCU)
- FIG.2.7 PASSENGER FLOW AT DIFFERENT LOCATIONS IN NAGPUR (16 HRS VC)
- FIG.2.8 OVERALL MODE SHARE OBSERVED ON ROADS
- FIG.2.9 PUBLIC PRIVATE MODAL SPLIT OF PASSENGERS (EXCLUDING REGIONAL BUSES)
- FIG.2.10PUBLIC PRIVATE MODAL SPLIT OF VEHICLES (EXCLUDING REGIONAL BUSES)
- FIG.2.11 PUBLIC PRIVATE MODAL SPLIT OF PCU OF VEHICLES (EXCLUDING REGIONAL BUSES)
- FIG.2.12 MODE SHARE AMONG PASSENGER VEHICLES WITHOUT METRO
- FIG.2.13 MODE SHARE BETWEEN PUBLIC AND PRIVATE PASSENGER VEHICLES WITH METRO
- FIG.2.14 ALIGNMENT OF NAGPUR METRO PROPOSED IN JULY 2013
- FIG.2.15 FINAL ALIGNMENT

Chapter 2 – Traffic Demand Forecast

CHAPTER 2

TRAFFIC DEMAND FORECAST

2.1 INTRODUCTION:

Nagpur Improvement Trust [NIT] has entrusted the job of preparing Detail Project Report (DPR) for Nagpur Metro Rail¹ to Delhi Metro Rail Corporation [DMRC]

Traffic Study and Ridership estimation are the first tasks in DPR which imply finalizing a feasible alignment plan of the proposed metro network and then locating normal and interchange metro stations (if any). After that, Ridership Estimation is done. Estimating daily and peak hour boarding and alighting from each station, daily link load and PHPDT link loads [all together is called Ridership Estimation] are estimated. These estimates are primary inputs to other important estimates such as station design, train operation plan, estimates of revenue collection, benefits of metro, rolling stock and many other estimates including EIRR and FIRR.

Alignment is finalized after repeated inspection of the road network, intersections, passenger traffic flow, traffic congestion, connectivity to important landuses. Wide roads

¹ The Nagpur Metro Rail project is announced by the state government of Maharashtra for the city with the expenses of 4,400 Cr and 3,800 Cr Rupees for its two phases of 25 km (from Sitabuldi to <u>MIHAN</u> and <u>Butibori</u> via <u>Airport</u>) and 20 km (Sitabuldi to Automotive Square in Kamptee) respectively. Consultants Delhi Metro Railway Corporation (DMRC) will study the alignment and submit a detailed project report.

The site inspection has already begun in March 2012 with the initiatives from Nagpur Improvement Trust [NIT]. The Rs 10,000-crore project will be executed by a new company called **Nagpur Metro Transport Co Ltd (NMTCL)** formed under the NIT. NMC, Maharashtra Airport Development Corporation (MADC) — that is currently developing the MIHAN project — MIDC and CIDCO are the other participating organisations. (source: http://en.wikipedia.org/wiki/Nagpur#citi_note#[64],[65],[66]

are normally selected for alignment to avoid relocation, land purchase and demolition of buildings. Sharp bends are avoided. Underground construction is considered only when necessary space for elevated line is not available or such construction is prohibited in the area.

Stations are located near large road intersections so that passenger from all direction can access the station. In general, inter-station gap is kept between 0.5 to 1.5 km. Engineering feasibility of the alignment is considered simultaneously.

In this particular (Nagpur) study, a few traffic and land use related physical surveys were undertaken. These are (1) Traffic Volume Count (TVC) and Passenger Occupancy Surveys (PCS) at mid block sections, screen lines and outer cordon points, (2) Bus and Rail Mode passenger Terminal Survey and (3) Work Place Survey. Several important output were derived which will be shown in subsequent paragraphs.

Secondary data which were collected include past and present population of Nagpur Urban Agglomeration, word wise population of Nagpur City, Road and Rail Network within Nagpur and Future Land Use Map of Nagpur. For verification purpose, Google Earth website has been used.

Road Network and Landuse Map of Nagpur were geo coded and digitized layers were created using TransCad Software.

2.2 POPULATION OF NAGPUR

As per provisional reports of Census India, population of Nagpur in 2011 is 2,405,421; of which male and female are 1,226,610 and 1,178,811 respectively. The sex ratio of Nagpur city is 961 per 1000 males. In education section, total literates in Nagpur city are 2,018,598 of which 1,060,359 are males while 958,239 are females. Average literacy rate of Nagpur city is 93.13 percent of which male and female literacy was 96.16 and 89.99 percent. Total children (0-6) in Nagpur city are 237,865 as per figure from Census India report on 2011. There were 123,851 boys while 114,014 are girls. Child sex ratio of girls is 921 per 1000 boys. Nagpur city is governed by Municipal Corporation which comes under Nagpur Urban Agglomeration. Although Nagpur city has population of 2,405,421; its urban / metropolitan population is 2,497,777 of which 1,275,750 are males and 1,222,027 are females².

Another positive outcome for Nagpur region is the Decadal Growth Rate of population. It has come down from 23.74 in the last decade (1991-2001) to 14.39 in 2001-2011.Nagpur region added the least number of people in its population in this decade than any other³

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

² <u>http://www.census2011.co.in/census/city/353-nagpur.html</u>

³ <u>http://www.mh-31.com/nagpur/about-nagpur/nagpur-general/496-population-census-nagpur</u>

In 2001, the urban population was 2,129,500, and there were around 410,000 households in the city. 726,664 people lived in slums making Nagpur second-most slum-populated city in Maharashtra after Mumbai. Scheduled Castes and Scheduled Tribes accounted for around 50% of the population⁴.

Figure 2.1: Zero Mile Nagpur, is the Geographical center of India

2. 3 ECONOMY OF NAGPUR⁵

Nagpur has been the main center of commerce in the Vidarbha region since early days and is an important trading location. However, Nagpur's economic importance had gradually declined relative to Mumbai and Pune after the merging of Vidarbha into the Maharashtra because of a period of neglect by the state government. During the slowdown, state and central government offices were a major source of employment in the city. Nagpur's economy is now recovering from past slowdowns and city has attracted Rupees 5,000 crore in investment in 2004. The city is important for the banking sector as it hosts the regional office of **Reserve Bank of India**, which was opened on September 10, 1956. **Sitabuldi** market in central Nagpur, known as the Heart of the city, is the major commercial market area of city.

The **Butibori** industrial area is the largest in all of Asia in terms of area. The estate's largest unit is of Indo Rama Synthetics, which manufactures synthetic polyester yarn. Other units in Butibori include the power transmission company KEC, Hyundai Unitech, ACC Nihon Castings Ltd. **Koradi Thermal Power Station** and **Khaparkheda Thermal**

Page 3 of 5

⁴ <u>http://en.wikipedia.org/wiki/Nagpur</u>

⁵ <u>http://nmc.org.in/economy.aspx</u>

Power Station are the two major thermal power stations located near Nagpur and operated by **MSPGCL**.

The Hingna industrial estate located on the western fringes of the city is made up of around 900 small and medium industrial units. The major ones among them are tractor manufacturing plant of **Mahindra and Mahindra**, casting units of NECO Ltd. (the country's largest casting group), units of International Combustion, Bajaj Auto group, Candico (the SECOND largest confectionery manufacturing plant in India), Ajanta toothbrushes and Sanvijay Group (largest steel rolling group of companies for long products in Central India). Nagpur is home to ice-cream manufacturer Dinshaws, Indian dry food manufacturer Haldiram's and Ayurvedic product company Vicco.

2.4 CARGO HUB AND AIRPORT AT NAGPUR (MIHAN)

Nagpur is witnessing an economic boom as the "Multi-modal International Cargo Hub and Airport at Nagpur (MIHAN)" is being developed. MIHAN will be used for handling heavy cargo coming from south east Asia and the Middle East. The project will include Indian rupee ₹10,000 crore (US\$2.17 billion) Special Economic Zone (SEZ) for Information Technology (IT) companies. Persistent Systems has one of the software development centers at Nagpur.

MIHAN - Multi-modal International Cargo Hub and Airport at Nagpur is the biggest economical development project currently underway in India in terms of investment. **MIHAN** is spread over an area of 4354 Hectares. MIHAN is an Ideal business hub, located in **Nagpur**, the geometrical centre of India and easily accessible to all the metro cities of India as well as the world.

MIHAN Project consists of two parts namely **International airport** to act as a **cargo hub** and a **Special Economic Zone SEZ** with residential zone covering a total area of 40.25 sq. km on the southern end of Nagpur. Maharashtra Government formed a special purpose entity in the name of **Maharashtra Airport Development Company** (MADC) for development of **MIHAN**. The project is financed by multiple Indian banks with total loan amount of INR 3,000 million along with investment from state government and Airports Authority of India. With a projected target of serving 14 million passengers and handle 0.87 million tones of cargo this is one of largest aviation project in India. The estimated capital cost of the project is INR 2581 crores (by year 2035) and is supposed to generate revenues INR 5280 crores (**Nagpur**).

A new **Nagpur SEZ** of 2086 hectares, largest multi-product SEZ in India, would be built along side the airport. Out of 2086 hectares, 1472 hectares would be used by various processing units to be set-up and remaining 614 hectares for service sector unit. Like all SEZs it will have financial incentives and soft taxation policy to attract investment. The initial set-up material for these units and later raw material will be duty-free.

Figure2.2: Buildings under construction MIHAN

Figure 2.3: MIHAN Administrative Office

2.5 TRAFFIC VOLUME COUNT (TVC) AND PASSENGER OCCUPANCY SURVEYS (OCS)

To understand traffic characteristics in terms of vehicular, passenger and PCU, 40 traffic count stations were identified, some of which are mid block sections, some locations were fixed as screen line points and some were as outer cordon points⁶. In table 2.1, total traffic flow for all 40 locations and for both direction in terms of PCU is given. In table 2.2, a grouped vehicular traffic volume of fast, slow (NMT) and goods vehicles for all 40 locations is given. Nagpur being located at a central position, many inter-city and inter-state bus routes pass, so separate columns are given for such trips (external buses). In figure 2.4, TVC locations are shown.

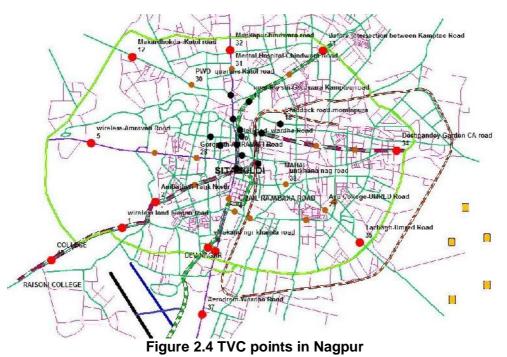


Table 2.1

74	
Direction wise PCU	Traffic details at- Nagpur

Loc.No.	Loc. Name		Direction	Traffic PCU	PEAK PCUs	Peak Hour (%)
1	Wireless land hingna road	E-W	Nagpur to Hingna	9,480	685	8.95%
1	Wireless land hingna road	W-E	Hingna to Nagpur	9,233	638	8.63%
2	Ambajheri Tank North	E-W	Nagpur to	8,866	717	9.36%

⁶ Location type split is given in Appendix

						Peak
				Traffic	PEAK	Hour
Loc.No.	Loc. Name		Direction	PCU	PCUs	(%)
			Hingna			
			Hingna to		740	10.66%
2	Ambajheri Tank North	W-E	Nagpur	8,294	740	10.00%
			Bhandara to		1,074	8.10%
3	CA road near Rly stn	E-W	Nagpur	14,440	1,074	0.1070
			Nagpur to		1,052	8.12%
3	CA road near Rly stn	W-E	Bhandara	13,889	,	
4	Rajabaxa Road Central Jail	E-W	Ajni to Wardha	12 /06	1,161	10.01%
4	Rajabaxa Road Central		Ajni to Wardha	13,496		
4	Jail	W-E	wardh to ajni	14,560	1,342	11.22%
T	Wireless – Amravati		nagpur to	14,000		
5	Road	E-W	amravati	12,424	1,356	12.77%
	Wireless – Amravati		amravati to	,	4 004	0.000/
5	Road	W-E	nagpur	11,859	1,001	9.92%
	Ghat Road – near		nagpur to		1,188	9.07%
6	subhash rd intersection	N-S	wardha	13,960	1,100	9.0776
	Ghat Road – near		wardha to		1,281	11.42%
6	subhash rd intersection	S-N	nagpur	11,848	1,201	11.1270
-	Ansari road – near		gneshpeth to	40 500	1,384	12.60%
7	sitabuldi	E-W	zero mile	13,566	,	
7	Ansari road – near sitabuldi	W-E	zero mile to ganeshpeth	15,533	1,289	10.20%
1	Silabului		zero mile to	13,333		
8	Bus stand – Wardha road	N-S	mumbai	16,074	1,363	9.99%
			mumbai to zero	10,071		
8	Bus stand – Wardha road	S-N	mile	14,916	1,468	10.49%
	Ravindranath Nath		vca to		500	0.700/
9	Tagore Marg	N-S	maharajbagh	5,922	526	9.79%
	Ravindranath Nath		maharajbagh to		764	12.01%
9	Tagore Marg	S-N	vca	7,089		
10	Heli pad – Wardha road	N-S	delhi to zero mile	18,582	1,409	9.78%
10	Heli pad – Wardha road	S-N	zero mile to delhi	17,648	1,465	10.06%
	Old secretariat – Palm		nagpur to		890	12.39%
11	road	E-W	amravati	9,614	030	12.03/0
	Old secretariat – Palm		amravati to		570	9.83%
11	road	W-E	nagpur	6,977	010	0.0070
10	Makardhokda – Katol		nognus to kotal	0.050	566	8.91%
12	road Makardhokda – Katol	E-W	nagpur to katol	8,053		
12	road	W-E	katol to nagpur	7,187	592	9.02%
12	Kasturchand park – palm		nagpur st to	7,107		
13	road	N-S	mumbai	8,356	745	9.49%
	Kasturchand park – palm		mumbai to	0,000	000	40.000/
13	road	S-N	nagpur st	8,998	920	10.93%
14	Holy cross – Road along	E-W	nagpur st to vca	11,874	970	9.44%

						Peak
				Traffic	PEAK	Hour
Loc.No.	Loc. Name		Direction	PCU	PCUs	(%)
	Kastur park					
	Holy cross – Road along				074	0.000/
14	Kastur park	W-E	vca to nagpur st	12,062	874	8.63%
	Chindwara Road and				1,157	8.60%
15	Mount Road X	N-S	delhi to nagpur	17,283	1,157	0.00%
	Chindwara Road and				1,207	9.58%
15	Mount Road X	S-N	nagpur to delhi	15,525	1,207	0.0070
10	Chindwara Road Raj		1.11.1.	44 500	940	9.69%
16	Bhavan	N-S	delhi to nagpur	11,509		
10	Chindwara Road Raj	C NI	nognur to dolbi	12 250	1,156	10.09%
16	Bhavan Near Rly stn –	S-N	nagpur to delhi kamptee to	13,259		
17	Gurudwara Kamptee road	N-S	nagpur	13,164	1,215	9.61%
17	Near Rly stn –	N-0	nagpur to	13,104		
17	Gurudwara Kamptee road	S-N	kamptee	13,794	2,015	14.44%
	Craddock road –	0.11	bhandara to	10,101		0.4704
18	mominpura	E-W	nagpur	5,361	349	9.17%
	Craddock road –		nagpur to		404	0.229/
18	mominpura	W-E	bhandara	6,293	404	9.32%
			kamptee to		1,153	8.68%
19	Indora – Kamptee road	E-W	nagpur	16,733	1,100	0.0070
			nagpur to		1,035	7.68%
19	Indora – Kamptee road	W-E	kamptee	15,604	.,	
20	Adarsh Vidya Mandir	E-W	bhandara to	40.004	1,032	8.88%
20	society-CA Road Adarsh Vidya Mandir		nagpur	13,084		
20	society-CA Road	W-E	nagpur to bhandara	13,969	1,004	7.88%
20	Before intersection of CA		bhandara to	15,909		
21	Road and Factory	E-W	nagpur	12,652	1,232	11.34%
	Before intersection of CA		nagpur to	,		0 700/
21	Road and Factory	W-E	bhandara	11,512	946	8.72%
	Jawahar Nagar – West		bhandara to		1 016	14 6 10/
22	Boundary road	E-W	nagpur	9,920	1,216	14.61%
	Jawahar Nagar – West		nagpur to		928	9.60%
22	Boundary road	W-E	bhandara	11,657	520	5.0070
	Ayu College – UMRED			a	706	8.96%
23	Road	E-W	umred to nagpur	9,030		
22	Ayu College – UMRED			7 007	795	10.45%
23	Road Somwaripeth – Ridge	W-E	nagpur to umred	7,867		
24	Road	E-W	umred to ajni	11,741	771	9.51%
27	Somwaripeth – Ridge			11,741		
24	Road	W-E	ajni to umred	13,838	1,068	11.06%
	Railway quarters – Ajni			10,000	4 6 6 6	40.000/
25	Road	E-W	umred to ajni	17,430	1,299	10.99%
25	Railway quarters – Ajni	W-E	ajni to umred	15,141	1,152	10.27%

						Peak
				Traffic	PEAK	Hour
Loc.No.	Loc. Name		Direction	PCU	PCUs	(%)
	Road					
	Rahatey colony – Wardha		nagpur to		1,284	9.79%
26	Road	N-S	wardha	14,441	1,204	0.7070
00	Rahatey colony – Wardha		wardha to	44.070	1,397	10.26%
26	Road Near SBI ATM – North	S-N	nagpur	14,878		
27	Ambajheri Road	E-W	nagpur to hingna	13,913	1,058	10.34%
21	Near SBI ATM – North			10,010		
27	Ambajheri Road	W-E	hingna to nagpur	14,893	984	9.56%
	Gorepath – AMRAVATI		nagpur to	,	1 1 75	0 400/
28	road	E-W	amravati	14,383	1,175	8.42%
	Gorepath – AMRAVATI		amravati to		0	0.00%
28	road	W-E	nagpur	14,509	0	0.0070
	Hindustan colony –		nagpur to		759	9.18%
29	Amravati road	E-W	amravati	8,909		
29	Hindustan colony – Amravati road	W-E	amravati to	8,211	673	9.05%
29	PWD quarters – Katol		nagpur	0,211		
30	road	E-W	nagpur to katol	9,345	721	8.44%
	PWD quarters – Katol			0,010	004	0.050/
30	road	W-E	katol to nagpur	10,668	821	9.65%
	Mental Hospital –				695	9.06%
31	Chindwara road	N-S	delhi to nagpur	8,995	095	9.00 /0
	Mental Hospital –	_			1,098	10.76%
31	Chindwara road	S-N	nagpur to delhi	11,529	1,000	10.1070
20	Mankapur – Chindwara	NO		7 007	603	9.07%
32	road Mankapur – Chindwara	N-S	delhi to nagpur	7,387		
32	road	S-N	nagpur to delhi	8,846	734	9.62%
	Before intersection		kamptee to	0,040		
33	between Kamptee Road	E-W	nagpur	16,251	1,803	9.87%
	Before intersection		nagpur to	, -	1 404	10.000/
33	between Kamptee Road	W-E	kamptee	12,493	1,491	10.29%
	Deshpandey Garden –		bhandara to		769	8.21%
34	CA road	E-W	nagpur	10,790	,	0.2170
.	Deshpandey Garden –		nagpur to	0 707	855	9.84%
34	CA road	W-E	bhandara	9,725		
35	Tazbagh – Umred Road	E-W	umred to nagpur	7,199	603	8.75%
35	Tazbagh – Umred Road	W-E	nagpur to umred	6,886	627	8.83%
	Vivekanandnagar –		nagpur to		1,491	9.82%
36	Wardha road	N-S	wardha	19,124	.,	0.0270
26	Vivekanandnagar –	S NI	wardha to	17 020	1,553	10.83%
36	Wardha road Aerodram – Wardha	S-N	nagpur pagpur to	17,938		
37	Road	N-S	nagpur to wardha	13,716	1,262	10.84%
	Aerodram – Wardha	S-N			1,062	8.50%
37	Actourant - Waruna	3-IN	wardha to	12,393	1,002	0.0070

Chapter 2 – Traffic Demand Forecast

Loc.No.	Loc. Name		Direction	Traffic PCU	PEAK PCUs	Peak Hour (%)
	Road		nagpur			
38	Vivekananad Nagar- Khamla Road	N-S	nagpur to hingna	7,258	564	10.63%
38	Vivekananad Nagar- Khamla Road	S-N	hingna to nagpur	7,076	504	9.58%
39	Untkhana- Nag Road	E-W	ajni to bhandara	9,953	1,203	10.75%
39	Untkhana- Nag Road	W-E	bhandara to ajni	8,773	698	8.59%
40	Raisoni College-Hingna Road	E-W	Nagpur to Hingna	10,347	676	8.40%
40	Raisoni College-Hingna Road	W-E	Hingna to Nagpur	9,535	719	9.87%

Vehicular Traffic details at 40 different locations - Nagpur						
TVC Loc ation No	DIRECTION	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS VEHICLE
1	WIRELESS LAND-HINGNA ROAD	15,521	13,889	14867	14,220	647
2	AMBAZHARI TANK NORTH	14,233	13,398	13940	12,545	1,395
3	CA ROAD NEAR RLY SATION	24,654	22,648	23971	22,147	1,824
4	C ZAIL RAJABAXA ROAD	25,461	23,816	24936	23,403	1,533
5	WIRELESS - AMRAVATI ROAD	22,523	22,049	19858	18,848	1,010
6	GHAT ROAD NEAR SUBHASH ROAD INTERSECTION	21,840	20,455	20909	18,937	1,972
7	ANSARI ROAD - NEAR SITA BULDI	26,531	24,828	26166	24,669	1,497
8	BUS STAND- WARDHA ROAD	27,831	25,825	27540	25,367	2,173
9	RAVINDRANATH TAGORE MARG	11,051	9,153	10763	10,348	415

Table 2.2 Vehicular Traffic details at 40 different locations - Nagou

TVC Loc ation No	DIRECTION	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS VEHICLE
10	HELIPAD- WARDHA ROAD	31,498	29,279	30745	27,878	2,867
11	OLD SECRETARIAT- PALM ROAD	14,532	13,600	14105	13,778	327
12	MAKARDHOKDA- KATOL ROAD	12,772	11,781	12331	11,539	792
13	KASTUR CHAND PARK-PALM ROAD	12,090	10,929	11786	11,325	461
14	HOLY CROSS ROAD-ALONG KASTUR PARK	20,794	18,290	20429	19,879	550
15	CHINDWARA AND MOUNT ROAD X	29,996	27,782	29544	27,705	1,839
16	CHINDWARA ROAD RAJBHAWAN	20,936	18,728	20534	19,154	1,380
17	NEAR RLY STN- GURDWARA KAMPTEE ROAD	21,733	19,390	20747	18,353	2,394
18	CRADDOCK ROAD- MOMINPURA	8,531	8,426	8519	8,493	26
19	INDORA- KAMPTEE ROAD	27,411	25,408	26132	25,180	952
20	ADARSH VIDYA MANDIR SOCIETY-CA ROAD	22,538	21,324	21536	20,822	714
21	INTERSECTION OF CA ROAD AND FACTORY	17,336	16,688	16604	15,858	746
22	JAWAHAR NAGAR-WEST BOUNDARY ROAD	18,489	17,698	17740	16,708	1,032
23	AYU COLLEGE- UMRED ROAD	14,146	12,995	13458	12,505	953
24	SOMWARI PETH- RIDGE ROAD	21,985	20,893	21606	21,166	440

Page 11 of 53

TVC Loc ation No	DIRECTION	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS VEHICLE
25	RAILWAY QUATERS-AJNI ROAD	28,083	27,236	27559	27,074	485
26	RAHATEY COLONY- WARDHA ROAD	27,269	23,019	26561	25,688	873
27	NEAR SBI ATM- NORTH AMBAJHERI ROAD	25,739	24,753	25624	24,734	890
28	GOREPATH- AMRAVATHI ROAD	25,455	22,275	25008	23,743	1,265
29	HINDUSTAN COLONY- AMRAVATHI ROAD	14,124	12,173	13530	12,645	885
30	PWD QUATERS- KATOLROAD	17,050	15,555	16539	15,387	1,152
31	MENTAL HOSPITAL- CHINDWARA ROAD	18,007	17,075	17623	16,720	903
32	MANKAPUR- CHHINDWARA ROAD	13,968	13,034	13320	12,423	897
33	BEFORE INTERSECTION BETWEEN KAMPTEE ROAD	23,210	20,797	19897	17,394	2,503
34	DESHPANDEY GARDEN- CA ROAD	15,089	12,634	14064	13,513	551
35	TAZBAGH- UMRED ROAD	10,820	10,176	10244	9,199	1,045
36	VIVEKANAND NAGAR- WARDHA ROAD	34,778	32,478	33875	32,066	1,809
37	AERODRAM- WARDHA ROAD	24,603	22,466	22663	20,753	1,910
38	VIVEKANAND NAGAR-KHAMLA ROAD	11,344	10,720	10957	10,920	37

Page 12 of 53

TVC Loc ation No	DIRECTION	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS VEHICLE
39	UNTKHANA NAG ROAD	14,776	13,557	14003	12,077	1,926
40	HINGNA ROAD ROISONI COLLEGE	16,732	15,057	16197	15,669	528

In table 2.3 passengers traveled on fast modes, passenger vehicle flow and number of vehicles per passenger is given.

	Fast Mode Passenger details at 40 different locations - Nagpur						
		FAST MODE	FAST MODE				
TVC		PASSENGER	VEHICULAR				
Location	DIRECTION	TRAFFIC	TRAFFIC	VEHICLE /			
No	DIRECTION	WITH	WITH	PASSENGER			
NO		EXTERNAL	EXTERNAL				
		BUSES	BUSES				
1	WIRELESS LAND-HINGNA ROAD	93847	14867	0.158			
2	AMBAZHARI TANK NORTH	59016	13940	0.236			
3	CA ROAD NEAR RLY SATION	127135	23971	0.189			
4	C ZAIL RAJABAXA ROAD	117720	24936	0.212			
5	WIRELESS - AMRAVATI ROAD	61180	19858	0.325			
6	GHAT ROAD NEAR SUBHASH ROAD INTERSECTION	93156	20909	0.224			
7	ANSARI ROAD - NEAR SITA BULDI	117908	26166	0.222			
8	BUS STAND- WARDHA ROAD	148996	27540	0.185			
9	RAVINDRANATH TAGORE MARG	98211	10763	0.110			
10	HELIPAD-WARDHA ROAD	139631	30745	0.220			
11	OLD SECRETARIAT-PALM ROAD	66980	14105	0.211			
12	MAKARDHOKDA-KATOL ROAD	65403	12331	0.189			
13	KASTUR CHAND PARK-PALM ROAD	78044	11786	0.151			
14	HOLY CROSS ROAD-ALONG KASTUR PARK	152690	20429	0.134			
15	CHINDWARA AND MOUNT ROAD X	141858	29544	0.208			
16	CHINDWARA ROAD	136751	20534	0.150			

 Table 2.3:

 Fast Mode Passenger details at 40 different locations - Nagour

		FAST MODE	FAST MODE	
TVC Location No	DIRECTION	PASSENGER TRAFFIC WITH EXTERNAL BUSES	VEHICULAR TRAFFIC WITH EXTERNAL BUSES	VEHICLE / PASSENGER
	RAJBHAWAN			
17	NEAR RLY STN-GURDWARA KAMPTEE ROAD	135365	20747	0.153
18	CRADDOCK ROAD- MOMINPURA	20387	8519	0.418
19	INDORA-KAMPTEE ROAD	145305	26132	0.180
20	ADARSH VIDYA MANDIR SOCIETY-CA ROAD	107116	21536	0.201
21	INTERSECTION OF CA ROAD AND FACTORY	67343	16604	0.247
22	JAWAHAR NAGAR-WEST BOUNDARY ROAD	61951	17740	0.286
23	AYU COLLEGE-UMRED ROAD	73596	13458	0.183
24	SOMWARI PETH-RIDGE ROAD	78767	21606	0.274
25	RAILWAY QUATERS-AJNI ROAD	83026	27559	0.332
26	RAHATEY COLONY-WARDHA ROAD	234228	26561	0.113
27	NEAR SBI ATM-NORTH AMBAJHERI ROAD	87531	25624	0.293
28	GOREPATH-AMRAVATHI ROAD	191285	25008	0.131
29	HINDUSTAN COLONY- AMRAVATHI ROAD	112589	13530	0.120
30	PWD QUATERS-KATOLROAD	96692	16539	0.171
31	MENTAL HOSPITAL- CHINDWARA ROAD	84956	17623	0.207
32	MANKAPUR-CHHINDWARA ROAD	67447	13320	0.197
33	BEFORE INTERSECTION BETWEEN KAMPTEE ROAD	136760	19897	0.145
34	DESHPANDEY GARDEN- CA ROAD	126243	14064	0.111
35	TAZBAGH-UMRED ROAD	50216	10244	0.204
36	VIVEKANAND NAGAR-WARDHA ROAD	157681	33875	0.215
37	AERODRAM-WARDHA ROAD	120926	22663	0.187
38	VIVEKANAND NAGAR-KHAMLA ROAD	50103	10957	0.219
39	UNTKHANA NAG ROAD	76822	14003	0.182
40	HINGNA ROAD ROISONI	97985	16197	0.165

TVC Location No	DIRECTION	FAST MODE PASSENGER TRAFFIC WITH EXTERNAL BUSES	FAST MODE VEHICULAR TRAFFIC WITH EXTERNAL BUSES	VEHICLE / PASSENGER
	COLLEGE			

In table 2.4 peak hour details of Vehicular, Passenger and PCU are shown.

TVC Location No	DIRECTION	VEH	PASS	PCU
1	WIRELESS LAND-HINGNA ROAD	8.89%	9.07%	8.32%
2	AMBAZHARI TANK NORTH	11.35%	0.00%	9.34%
3	CA ROAD NEAR RLY SATION	8.58%	9.86%	7.71%
4	C ZAIL RAJABAXA ROAD	9.48%	9.86%	9.40%
5	WIRELESS -AMRAVATI ROAD	11.27%	8.43%	10.10%
6	GHAT ROAD NEAR SUBHASH ROAD INTERSECTION	8.81%	10.52%	8.87%
7	ANSARI ROAD - NEAR SITA BULDI	11.00%	9.05%	9.36%
8	BUS STAND- WARDHA ROAD	9.43%	8.95%	9.30%
9	RAVINDRANATH TAGORE MARG	10.97%	9.22%	10.99%
10	HELIPAD-WARDHA ROAD	9.35%	9.45%	9.39%
11	OLD SECRETARIAT-PALM ROAD	11.10%	11.40%	10.12%
12	MAKARDHOKDA-KATOL ROAD	8.48%	9.30%	8.19%
13	KASTUR CHAND PARK-PALM ROAD	8.79%	8.85%	9.08%
14	HOLY CROSS ROAD-ALONG KASTUR PARK	9.29%	9.82%	9.03%
15	CHINDWARA AND MOUNT ROAD X	9.03%	9.17%	8.34%
16	CHINDWARA ROAD RAJBHAWAN	9.07%	9.97%	8.97%
17	NEAR RLY STN-GURDWARA KAMPTEE ROAD	11.51%	12.35%	12.14%
18	CRADDOCK ROAD-MOMINPURA	8.56%	10.69%	8.71%
19	INDORA-KAMPTEE ROAD	8.31%	9.50%	7.91%
	ADARSH VIDYA MANDIR			
20	SOCIETY-CA ROAD	7.78%	9.84%	7.71%
21	INTERSECTION OF CA ROAD	8.81%	10.54%	9.22%

Table 2.4PEAK HOUR details at 40 different locations - Nagpur

TVC Location No	DIRECTION	VEH	PASS	PCU
	AND FACTORY			
	JAWAHAR NAGAR-WEST			
22	BOUNDARY ROAD	9.11%	8.76%	10.05%
23	AYU COLLEGE-UMRED ROAD	9.11%	8.70%	8.79%
24	SOMWARI PETH-RIDGE ROAD	10.03%	10.66%	9.31%
25	RAILWAY QUATERS-AJNI ROAD	10.75%	10.40%	9.76%
26	RAHATEY COLONY-WARDHA ROAD	9.11%	9.46%	9.06%
20	NEAR SBI ATM-NORTH	3.1170	3.4070	3.00 /0
27	AMBAJHERI ROAD	9.59%	10.81%	9.29%
28	GOREPATH-AMRAVATHI ROAD	8.12%	10.53%	8.07%
29	HINDUSTAN COLONY- AMRAVATHI ROAD	9.63%	10.79%	8.94%
30	PWD QUATERS-KATOLROAD	8.46%	8.51%	8.23%
	MENTAL HOSPITAL-CHINDWARA			
31	ROAD	9.23%	7.80%	8.72%
	MANKAPUR-CHHINDWARA			
32	ROAD	7.75%	8.42%	7.92%
33	BEFORE INTERSECTION BETWEEN KAMPTEE ROAD	9.96%	9.24%	10.42%
	DESHPANDEY GARDEN- CA			
34	ROAD	9.37%	7.89%	8.79%
35	TAZBAGH-UMRED ROAD	7.87%	9.99%	8.15%
	VIVEKANAND NAGAR-WARDHA			
36	ROAD	10.08%	8.84%	9.67%
37	AERODRAM-WARDHA ROAD	9.97%	10.05%	9.41%
	VIVEKANAND NAGAR-KHAMLA			
38	ROAD	10.23%	9.61%	10.11%
39	UNTKHANA NAG ROAD	8.95%	8.44%	9.16%
	HINGNA ROAD ROISONI			
40	COLLEGE	8.77%	8.73%	8.48%

Through Nagpur, Delhi to Hyderabad National Highway has passed in North South direction, and Kolkata to Mumbai National Highway has passed in East-West direction and for that reason lot of goods traffic pass through Nagpur. In tables 2.5A and 2.5B Traffic Flow in PCU on NORTH-SOUTH and EAST-WEST direction are given. Corresponding bar diagrams are shown in figures 2.5 and 2.6.


Page 16 of 53

Page 17 of 53

TVC Location	Name of Locations	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS- VEHICLES-
32	MANKAPUR- CHHINDWARA ROAD	13792	11457	13458	10593	2865
31	MENTAL HOSPITAL- CHINDWARA ROAD	17159	14829	16905	13802	3104
16	CHINDWARA ROAD RAJBHAWAN	22861	17341	22667	17999	4668
15	CHINDWARA AND MOUNT ROAD X	27628	22093	27363	21748	5616
10	HELIPAD- WARDHA ROAD	30571	25024	30203	20995	9209
8	BUS STAND- WARDHA ROAD	28991	23976	28770	22305	6465
26	RAHATEY COLONY- WARDHA ROAD	31183	20558	30787	28180	2607
36	VIVEKANAND NAGAR- WARDHA ROAD	31665	25915	31050	24785	6265
37	AERODRAM- WARDHA ROAD	24606	19263	23230	16701	6529

 Table 2.5A

 Traffic Flow in PCU on NORTH--->SOUTH direction

(On Horizontal axis 1 stands for location 32 and 9 stands for location 37 as given in table 2.4)

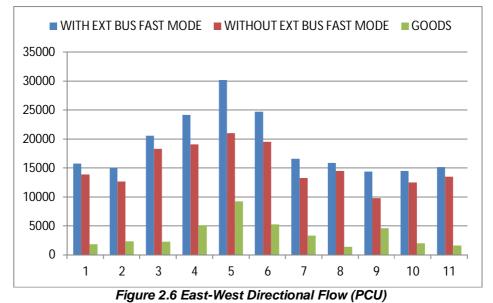
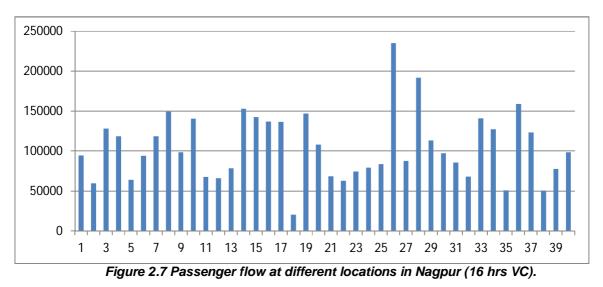

Tranic Flow in PCO on EAST>WEST direction							
TVC Location id	Name of Locations	FAST+SLOW TRAFFIC WITH EXTERNAL BUSES	FAST+SLOW TRAFFIC WITHOUT EXTERNAL BUSES	FAST MODE TRAFFIC WITH EXTERNAL BUSES	FAST MODE TRAFFIC WITHOUT EXTERNAL BUSES	GOODS- VEHICLES-	
34	DESHPANDEY GARDEN- CA ROAD	16279	10142	15757	13908	1849	
21	INTERSECTION OF CA ROAD AND FACTORY	15453	13833	14990	12650	2340	
20	ADARSH VIDYA MANDIR SOCIETY-CA ROAD	21231	18196	20586	18315	2271	
3	CA ROAD NEAR RLY SATION	24568	19553	24176	19086	5090	
10	HELIPAD- WARDHA ROAD	30571	25024	30203	20995	9209	
7	ANSARI ROAD - NEAR SITA BULDI	24919	20662	24699	19466	5234	
5	WIRELESS - AMRAVATI	17837	16652	16596	13238	3358	

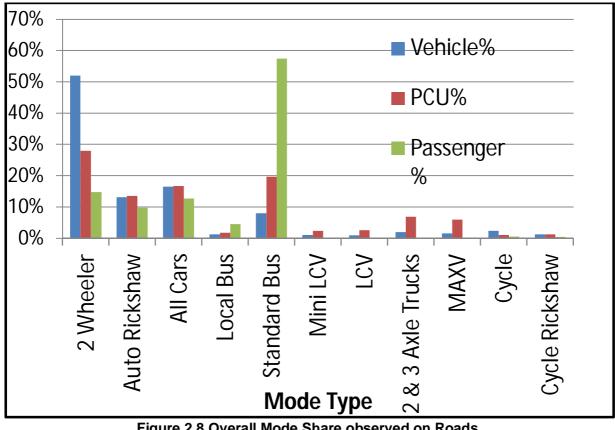
TABLE 2.5B Traffic Flow in PCU on EAST--->WEST direction


DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

Page 18 of 53

	ROAD					
24	SOMWARI PETH-RIDGE ROAD	16040	13310	15864	14467	1397
2	AMBAZHARI TANK NORTH	14581	12493	14406	9834	4573
1	WIRELESS LAND-HINGNA ROAD	14843	10763	14498	12500	1998
40	COLLEGE	15427	11240	15140	13493	1647

(On Horizontal axis 1 stands for location 34 and 11 stands for location 40 as given in table 2.5) Finally passenger traffic flow observed on all 40 locations is shown in figure 2.7. Highest counts are observed at Wardha Road Rahte Colony (Loc 26), Amravati Road (Loc 28);



Page 20 of 53

2.6 Mode Share and Modal Split within Nagpur City

2.6.1 Mode Share

In figure 2.8, average mode share observed on roads in terms of Vehicle, Passenger and PCU are shown. If external passenger is included, public mode share is high. However, if external trips are excluded different scenario will emerge.

In table 2.6, mode share of passenger trips observed on all 40 points are given.

Location no	2 Wheeler	Auto Rickshaw	All Cars	Local Bus	External Bus	Cycle	Cycle Rickshaw	PUBLIC	PRIVATE	NMT
1	11.6%	6.9%	9.6%	2.0%	69.0%	0.5%	0.2%	78.0%	21.2%	0.8%
2	17.5%	9.8%	14.2%	1.7%	56.3%	0.3%	0.2%	67.7%	31.7%	0.6%
3	12.4%	13.5%	10.1%	0.6%	62.7%	0.4%	0.2%	76.9%	22.5%	0.6%
4	16.1%	6.4%	15.9%	5.4%	55.6%	0.3%	0.2%	67.5%	32.0%	0.5%
5	26.2%	9.9%	21.7%	8.1%	29.6%	3.7%	0.7%	47.7%	48.0%	4.4%
6	16.8%	10.7%	11.0%	1.6%	58.8%	0.6%	0.6%	71.1%	27.7%	1.2%
7	17.1%	10.4%	13.5%	1.1%	57.6%	0.2%	0.2%	69.0%	30.6%	0.4%
8	11.3%	15.1%	9.4%	10.3%	53.7%	0.1%	0.2%	79.1%	20.7%	0.3%
9	5.4%	7.3%	9.8%	0.1%	77.0%	0.1%	0.3%	84.4%	15.2%	0.4%
10	19.2%	5.9%	6.7%	4.5%	63.2%	0.5%	0.1%	73.5%	25.9%	0.6%
11	16.4%	8.5%	15.9%	3.2%	55.3%	0.5%	0.2%	67.0%	32.3%	0.7%
12	13.1%	7.3%	15.2%	3.6%	60.1%	0.5%	0.3%	71.0%	28.3%	0.8%
13	8.2%	14.0%	9.6%	8.5%	59.3%	0.3%	0.1%	81.8%	17.8%	0.4%
14	7.1%	9.8%	11.9%	5.5%	65.4%	0.2%	0.0%	80.8%	18.9%	0.3%
15	17.1%	8.9%	8.8%	2.7%	62.2%	0.2%	0.1%	73.7%	25.9%	0.4%
16	8.9%	8.7%	11.3%	6.5%	64.4%	0.3%	0.1%	79.5%	20.2%	0.3%
17	7.6%	10.6%	11.9%	0.4%	68.6%	0.3%	0.6%	79.6%	19.5%	0.9%
18	40.5%	29.4%	7.7%	1.8%	20.6%	0.0%	0.0%	51.7%	48.2%	0.1%
19	13.5%	8.6%	9.6%	12.7%	54.6%	0.8%	0.2%	75.9%	23.1%	0.9%
20	10.9%	17.3%	18.7%	7.2%	44.8%	0.5%	0.6%	69.3%	29.6%	1.1%
21	16.6%	17.2%	17.6%	9.3%	38.0%	0.7%	0.6%	64.5%	34.2%	1.3%
22	25.6%	11.0%	10.3%	1.3%	50.3%	0.5%	1.0%	62.6%	35.9%	1.5%
23	11.9%	10.9%	12.1%	2.1%	61.9%	0.6%	0.5%	74.9%	24.0%	1.1%
24	27.4%	7.0%	9.4%	0.5%	55.2%	0.4%	0.1%	62.7%	36.8%	0.5%
25	32.4%	10.3%	14.1%	1.9%	40.5%	0.3%	0.4%	52.8%	46.5%	0.8%
26	4.3%	4.5%	18.4%	0.2%	72.3%	0.2%	0.1%	77.0%	22.7%	0.3%

Page 21 of 53

Table 2.6: Passenger Modal Split on the Roads

Location no	2 Wheeler	Auto Rickshaw	All Cars	Local Bus	External Bus	Cycle	Cycle Rickshaw	PUBLIC	PRIVATE	NMT
27	26.3%	10.4%	15.8%	2.4%	45.0%	0.1%	0.1%	57.8%	42.0%	0.2%
28	5.6%	5.8%	18.7%	3.3%	66.3%	0.2%	0.1%	75.4%	24.3%	0.3%
29	6.2%	7.7%	8.8%	7.8%	68.9%	0.4%	0.1%	84.4%	15.0%	0.6%
30	11.4%	9.7%	10.0%	6.8%	61.4%	0.2%	0.5%	77.9%	21.4%	0.7%
31	14.2%	11.9%	14.0%	15.7%	43.6%	0.3%	0.3%	71.2%	28.2%	0.5%
32	12.6%	8.8%	18.0%	4.7%	54.8%	0.8%	0.3%	68.3%	30.6%	1.0%
33	8.4%	6.4%	8.8%	5.0%	68.4%	0.9%	2.2%	79.8%	17.2%	3.1%
34	6.9%	4.0%	8.7%	2.4%	77.1%	0.7%	0.2%	83.5%	15.6%	0.9%
35	11.5%	11.3%	18.1%	7.1%	50.6%	0.7%	0.7%	69.0%	29.6%	1.4%
36	17.9%	5.0%	13.3%	5.1%	57.9%	0.3%	0.4%	68.0%	31.3%	0.7%
37	15.3%	3.5%	9.2%	0.7%	69.3%	0.8%	1.2%	73.5%	24.5%	2.0%
38	16.5%	9.6%	19.4%	4.3%	49.4%	0.7%	0.2%	63.3%	35.9%	0.8%
39	10.4%	10.4%	11.9%	3.4%	62.8%	0.8%	0.2%	76.6%	22.3%	1.1%
40	12.5%	7.6%	9.9%	1.5%	68.0%	0.4%	0.2%	77.0%	22.4%	0.6%

2.6.2 Modal Split within Nagpur City

In tables 2.1, 2.2, 2.3 and 2.4 Vehicular and Passenger Traffic volume and Peak hour counts are shown which may reflect on the road traffic situation but the corresponding modal splits shown in table 2.7 does not reflect real modal split within the city. The reason is given as under:

Geographically Nagpur is not only the center of India, but also the center of commercial and economic activities of a vast area surrounding the city. In this area, smaller towns such as Bhandara, Umred, Butibori, Wardha, Hingna, Nilodh, Kalameswar, Amravati, Kamptee, Ramtek, Bhilai, Raipur, Katol, Chhindwara etc. (all town names are not given) and villages in between Nagpur and these towns are included.

Naturally therefore, external trips to and from Nagpur are significant. To transport these trips, very good regional bus services exist apart from the Railways. Also long distance inter-state bus services are available from different bus stands in Nagpur. In TVC survey, standard buses captured are mostly regional bus services⁷. In terminal survey, (table 2.6), it is seen 2.32 lakh trips are external trips out of which 62% were made by bus. Many of these bus passengers board and alight bus at city bus stands and not from the terminals. Train passengers usually walk or take shared auto to go and return from their destination. It was also noted that at present there is very limited city bus services⁸. Therefore if the external services are excluded from the TVC, internal picture of Nagpur City passenger mode share will emerge.

To show the difference, average passenger trip modal splits between public, private and NMT are shown below. In this, Public mode includes local bus, auto, shared auto, taxis and shared taxis. Private mode includes Scooters, Motorcycles and cars. NMT includes cycles and cycle rickshaws. Intra-city passenger trip mode share of Nagpur excluding inter-city bus trips will **64.91%** by private mode and **32.96%** by public mode and **2.13%** by slow mode. A pi diagram is shown in figure 2.9.

⁷ We will in table 2.10, see that significant number of external trips for work are by bus

⁸ On record, there are 470 buses on PPP basis (a mix of 44 seater and 28 seater in Nagpur but most of them (more than 300) are grounded due to low revenue generation.

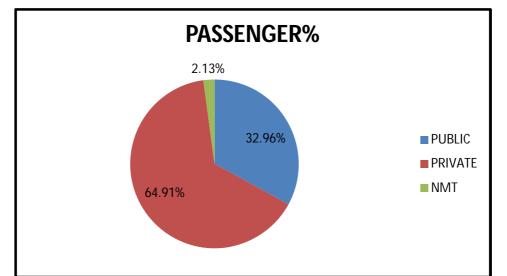


Figure 2.9 Public Private Modal split of passengers (excluding regional buses)

Out of the **64.91%** private mode passenger trips, about **33.75%** are two- wheeler trips and **31.16%** are trips made by cars. Out of **32.96%** public trips, **22.96%** are made by Auto Rickshaws and **10.00%** are made by local buses Vehicle-wise modal split of vehicles is shown in figure 2.10.

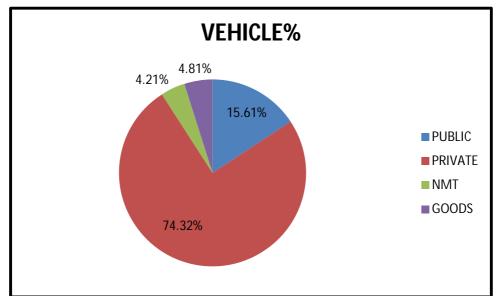
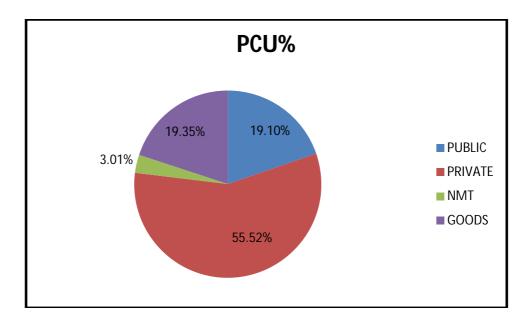



Figure 2.10 Public Private Modal split of vehicles (excluding regional buses)

In terms of vehicles, out of the 74.32% private mode trips, about 56.2% are twowheeler trips and 18.12% are trips made by cars. Out of 15.61% public trips, 14.3% are made by Auto Rickshaws and 1.01% are made by local buses

Page 25 of 53

Figure 2.11 Public Private Modal split of PCU of vehicles (excluding regional buses)

In terms of vehicle PCUs, out of the 55.5% private mode trips, about 34.3% are twowheeler trips and 21.2% are trips made by cars. Out of 19.10% public trips, 16.9% are made by Auto Rickshaws and 2.2% are made by local buses.

Analysis of data collected from TVC survey was for understanding the traffic flow characteristics on the Road Network. To determine amount of trip which may be diverted to Metro, Generalized cost based LOGIT model has been used. Details are given in section 4.4 and 4.5

2.7 TERMINAL SURVEY RESULTS

Bus and Rail Terminal stations were surveyed mainly to understand the magnitude of external trips. There are 3 railway stations and 7 bus terminals. A summary of incoming and outgoing passengers is given in table 2.7.

Terminal Name	In coming Passen gers	In coming %	Out going Passenge rs	Out going %	Total
Nagpur Main Railway Station	32862	50.1	32757	49.9	65619
Ajni Railway Station	2263	27.9	5850	72.1	8113
Itwari Railway Station	5502	37.9	9001	62.1	14503

Table 2.7 External Trips of Nagpur City

Terminal Name	In coming Passen gers	In coming %	Out going Passenge rs	Out going %	Total
Sitabuildi Bus Stand	8360	45.0	10206	55.0	18566
Ganeshpeth Bus Terminal	32130	49.9	32282	50.1	64412
Ravi Nagar Bus Stand	9803	52.2	8973	47.8	18776
Chattrapati Square	3720	33.2	7494	66.8	11214
Gandhibagh Bus Stand	1755	56.2	1368	43.8	3123
Indora Bus Stand	3395	55.0	2777	45.0	6172
More Bhavan Bus Stand	10580	62.0	6482	38.0	17062
MP Bus Stand	2954	54.6	2453	45.4	5407
	113324	48.64	119643	51.36	232967

Above data shows that 2.32 lakhs trips are external trips (which could be more as there are many boarding and alighting bus stops except main bus terminals) out of which 38% are by train and 62% are by regional and interstate bus service. Above data is for 16 hours (6AM-10PM). Many trips are purely external to external (incoming by bus and outgoing by train and vice versa). Quantum of external trips is about 10% which is expected for a city like Nagpur.

Hourly variation of incoming and outgoing passenger flow for Nagpur Railway Station is shown below in table 2.8.

Hourly va	Hourly variation of traffic for Nagpur Railway Station							
Time	IN	OUT	TOTAL					
6:00 - 7:00	4.41%	4.20%	4.31%					
7:00 - 8:00	7.94%	3.99%	5.96%					
8:00 - 9:00	5.81%	7.23%	6.52%					
9:00 - 10:00	5.72%	9.36%	7.54%					
10:00 - 11:00	5.75%	5.60%	5.67%					
11:00 - 12:00	4.74%	5.42%	5.08%					
12:00 - 1:00	5.86%	6.74%	6.30%					
1:00 - 2:00	6.53%	6.44%	6.48%					
2:00 - 3:00	4.78%	5.60%	5.19%					
3:00 - 4:00	5.07%	5.10%	5.08%					

Table 2.8 Hourly variation of traffic for Nagpur Railway Station

Time	IN	OUT	TOTAL
4:00 - 5:00	6.67%	5.68%	6.17%
5:00 - 6:00	8.38%	9.57%	8.97%
6:00 - 7:00	7.91%	7.49%	7.70%
7:00 - 8:00	7.96%	5.96%	6.96%
8:00 - 9:00	6.72%	6.94%	6.83%
9:00 - 10:00	5.77%	4.70%	5.23%

Hourly variation of incoming and outgoing passenger flow are not much and morning peaks for incoming and outgoing passengers are 7am-8am and 9am-10am respectively. Evening peaks for both incoming and outgoing are same at 5am-6am. Picture is totally different for Ajni and Itwari Railway stations as may be seen in table 2.9.

	AJNI		ITW	ARI
Time	IN	OUT	IN	OUT
6:00 - 7:00	3.89%	1.32%	17.81%	2.59%
7:00 - 8:00	16.48%	5.04%	7.91%	4.42%
8:00 - 9:00	9.10%	21.79%	3.18%	5.05%
9:00 - 10:00	3.67%	23.33%	4.82%	4.33%
10:00 - 11:00	5.21%	11.20%	6.09%	10.22%
11:00 - 12:00	2.43%	2.87%	8.58%	6.55%
12:00 - 1:00	1.68%	8.63%	8.45%	5.94%
1:00 - 2:00	1.81%	0.85%	5.18%	4.39%
2:00 - 3:00	2.83%	3.28%	3.09%	10.17%
3:00 - 4:00	5.08%	1.03%	4.36%	9.39%
4:00 - 5:00	9.28%	4.27%	4.27%	10.39%
5:00 - 6:00	14.58%	6.32%	5.73%	7.28%
6:00 - 7:00	11.09%	6.96%	7.36%	3.61%
7:00 - 8:00	4.60%	1.62%	7.09%	6.28%
8:00 - 9:00	4.86%	0.67%	3.64%	4.33%
9:00 - 10:00	3.40%	0.80%	2.45%	5.05%

 Table 2.9

 Hourly variation of traffic for AJNI & ITWARI Railway StationS

Peak hours for inbound passenger are early morning (16.48% between 6am-8am for Ajni) and 17.81% between 6am-7am for Itwari) and basically are factory workers. Outgoing passengers for Ajni are between 8am-10am and between 10 am -11 am for Itwari. Ajni rail station may be considered as an extended part of Nagpur Rail Station and many passenger interchange these two as per their convenience and train stoppage times. However, these two stations carry mostly commuters.

2.8 **TERMINAL PASSENGER INTERVIEW**

10881 passengers were interviewed at 8 main bus stands for knowing their travel characteristics. While most of the passengers use city bus for access and dispersal to and from bus stand large number of Auto Rickshaw users are also observed. Other mode users are insignificant. For rail passengers, for access and dispersal, auto rickshaw is used and low use of other modes (except train) indicates, people directly goes to their destination on foot.

		US	RAIL	
MODE	Access	Dispersal	Access	Dispersal
1 - Two Wheeler	9.1%	3.3%	8.4%	1.5%
2 - Auto Rickshaw	23.2%	12.1%	29.7%	11.0%
3 - Shared Auto Rickshaw	1.4%	1.0%	3.4%	0.5%
4 - Car	2.6%	0.8%	5.9%	1.4%
5 - Taxi	1.1%	0.7%	3.9%	0.6%
6 - Mini Bus (Public)	0.8%	1.3%	1.0%	0.5%
7 - Mini Bus (Regional)	0.1%	0.0%	0.6%	0.1%
8 - Bus (Public)	48.9%	60.7%	12.1%	2.1%
9 - Bus (Regional)	6.5%	17.1%	0.6%	0.2%
10 - Cycle Rickshaw	0.3%	0.2%	0.3%	0.4%
11 - Cycle	0.2%	0.1%	0.4%	0.0%
12 - Train	3.6%	2.0%	32.2%	81.5%
13 - Walk	2.3%	0.7%	1.4%	0.1%

Table 2.10 Mode used by external passengers

By bus, 33% passenger trips are daily and by rail, it is 15.5%, signifying a large number of persons living outside the city commute work by bus and other purposes.

Frequency of trips made by external passengers			
33.1%	15.6%	D - Daily	
14.9%	10.9%	W - Weekly	
34.9%	40.7%	M - Monthly	
17.0%	32.9%	O - Occasionally	

Table 2.11
Frequency of trips made by external passengers

Regarding occupation, revealing part of the table 2.12, is over 60% are working in small establishments such as Shops, Hotels and Restaurants or repair as non permanent workers. Showing types of job which are available in the city. About 25% are employees of Government and Private Establishments.

Occupation of external passengers			
BUS	RAIL	OCCCUPATION	
1.4%	0%	0-Not stated	
6.8%	5.6%	1 - Government Employee	
9.1%	8.9%	2 - Private Employee	
8.5%	5.1%	3 - Institute Employee	
18.7%	19.9%	4 - Shops/ Malls/ Stores	
31.3%	43.4%	5 - Hospitality	
12.5%	9.8%	6- Services (Banks/ repair shop)	
0.1%	0.5%	7 - Health	
0.7%	1.1%	8 - Others (Mention)	
10.9%	5.8%	9 - Student	
0.1%	0%	Unemployed	

 Table 2.12

 Occupation of external passengers

Purpose wise trips made shows (in table 2.13) that more than 50% trips are work trips. *Table 2.13*

Purpose wise external trips			
BUS	RAIL	PURPOSE	
0.1%	0.0%	0-Not Stated	
41.2%	41.4%	1 - Work	
12.0%	10.5%	2 - Business	
11.9%	6.6%	3 - Education	
2.2%	2.3%	4 - Social	
4.3%	2.3%	5 - Shopping	
3.1%	4.0%	6 - Recreation	
1.2%	6.3%	7 - Religious	
24.0%	26.7%	8 - Others	

2.9 WORK PLACE SURVEY

Workplace survey was conducted in Nagpur City to know the concentration and type of workplaces and workers socio-economic conditions. In all 60 thousand workplaces were intercepted where 1.94 lakh people are working. For a population of 24 lakhs, assuming 30% are workers, total workers are about 8 lakhs. In this manner, about 25% workers were recorded during the survey. This survey was aimed mainly to identify main work centers within the city and not for preparing an exhaustive list of workplaces. This survey has given a number of valuable information which is presented in the following tables:

Type of Establishments	Samples	Percent
Office (Private, Agency)	3098	5.16%
Factory (Small Scale Manufacturing)	238	0.40%
Institute (School, College, Coaching Center, Training Institute,)	1038	1.73%
Shopping (Retail and Wholesale Merchant)	47654	79.32%
Hospitality (Hotel, Restaurants, Eatery, Sweet meat shop etc.)	3195	5.32%
Services (Garage, Automobile Repair, Spare Parts, Mobile, Kirana store)	2634	4.38%
Health (Hospital, Nursing Home, Clinic, Medical Store, Gym,)	2031	3.38%
Others (Marriage Hall, Sabhagriha, Temples)	191 60079	0.32%

Table 2.14 Type of work Establishments

Table 2.15 shows that overwhelming number (85%) of work places are shopping and hospitality business. This survey has depicted the status of retail type employment and not the status of basic type employments such as employments in Government Offices and Railways.

work races as per number of employees				
1	2	31156	51.86%	
3	5	23201	38.62%	
6	10	4197	6.99%	
11	20	1290	2.15%	
21	50	211	0.35%	
51	100	17	0.03%	
>100		8	0.01%	

 Table 2.15

 Work Places as per number of employees

Classification as per employee size given in table 14 shows > 90% establishments have less or equal to 5 employees.

2.10 INTERVIEW OF WORKERS

15060 workers were interviewed and several interesting information were extracted from the interview. From table 2.16, it is observed 45.66% is one earning member family and 39% has two earners. From the table it is deduced workers /population ratio is 0.35. It is also seen student / population ratio is 0.32 (within sample). But it is not possible to know whether all these workers make work trips using vehicle.

Failing details of workers				
WORKERS IN FAMILY	NUMBER	PERCENT	FAMILY MEMBERS	STUDENTS IN FAMILY
1	6877	45.66%	27742	10229
2	5887	39.09%	30958	9842
3	2056	13.65%	12989	3415
4	240	1.59%	1813	428
ALL	15060		73502	23914

Table 2.16 Family details of workers

From sample data, trip length frequency is constructed and shown in table 2.17. Average trip length of workers was computed as 8.47 km.

Trip length frequency of workers				
FROM KM TO KM PERCENT				
1	5	28.9%		
6	10	45.4%		
11	15	18.2%		
16	20	4.3%		
21	25	1.4%		
26	30	1.9%		

Table 2.17

Table 2.18

Monthly income of workers				
RS	Percent			
10000	49.5%			
20000	20.7%			
50000	19.8%			
100000	8.8%			
	RS 10000 20000 50000	RS Percent 10000 49.5% 20000 20.7% 50000 19.8%		

200000

100000

As reported, 50% have income less than Rs. 10,000 per month. Average monthly income was deduced as Rs. 22022.

1.3%

As far as vehicle used for coming to work place is concerned, it is found 50% use two wheelers. Nearly 15% use public transport system. Frequency distribution is given in table 2.19.

Table 2.19Mode used by the workers			
Vehicle Type Sample %			
Two Wheeler	49.24%		
Auto Rickshaw	20.17%		
Shared Auto Rickshaw	3.41%		

Vehicle Type	Sample %
Car	8.12%
Taxi	2.20%
Mini Bus (Public)	3.80%
Mini Bus (Regional)	1.20%
Bus (Public)	8.42%
Bus (Regional)	0.48%
Cycle Rickshaw	0.32%
Cycle	1.81%
Train	0.35%
Walk	0.47%
Total	100%

Average journey time (as reported) is 26.6 minute. Average expenditure on travel per day is Rs. 24.56.

As far as location of work place is concerned, 50% employment is concentrated in DHANTOLI, COTTON MARKET, ZERO MILE, SITABULDI areas which are within the core area of the city. Another 30% employment is in MANAKPUR, MAHAL, LAW COLLEGE, BHANDARA ROAD, MANEWADA, FORT, GANESHPETH, SADAR and LAKDAGANJ areas. There are also a few isolated places such as INDORA, KHAMLA, ITWARI and KALMANA where work places exist. This is an important finding for fixing work trip attraction zones for trip distribution purpose.

2.11 TRIP FORECASTING USING TRAFFIC MOLELS

Four stage modeling procedure has been adopted which are known as trip generation, trip distribution, modal split and trip assignment. Many books and research papers are available in which basic theory and application are well explained. Depending upon the situation, different variations of the above stages are applied. A few references⁹ are given in the footnote. To start with, a few basic data such as Traffic Zone System (TAZ), Road and Other Transport Network, Land use data are prepared:

⁹ Ben-Akiva,M and Morikawa, T. 1990 Estimation of Travel Demand Models from Multiple Data Sources. Transportation and Traffic Theory, Cascetta, G.E., 2001 Transportation Systems Engineering; Theory and Methods, Kluwer Academic Publishers, Dordrecht. Koppelman, F. 1976 Guidelines for Aggregate Travel Prediction Using Disaggregate Choice Models Transportation Research Record 610

National Research Council (U.S.) Transportation Research Board (2000) Highway Capacity Manual, National Research Council (U.S.) Transportation Research Board

Sheffi, Y 1985 Urban Transportation Networks; Equilibrium Analysis with Mathematical Programming Methods. Englewood Cliffs, N.J.: Prentice Hall

Wilson, A.G. 1974 Urban and Regional Models in Geography and Planning, ,: Wiely London, New York M.G.Bell & Y.lida. 1997, Transport Network Analysis, John Wiley & Sons, England

2.12 TRIP ENDS ESTIMATION

After collecting necessary inputs from primary survey, secondary data as available were also investigated. Several rounds made in the city to physically verify concentration of residential population, work places and education centers and their connecting routes. A list of words (136), list of group zones (defined as ZONES numbering 1-10) and ward wise population of 2001 was available. In 2001, total population of Nagpur 136 wards was 20,52,066 with average population density 247/hector. Maximum population of any ward was found to be 16586, minimum population was 13,631 and average 15,089. From this it appears, wards were fixed on the basis of uniform population and not according to landuse activities.

Such wards cannot be successfully used as traffic analysis zones (TAZ) for estimating ridership on proposed metro network. A map of Nagpur city was available where future allocation of landuses was clearly marked. This map became very helpful for creating TAZs. Nagpur and its adjoining areas were brought under new traffic zone system which had 368 internal and 10 external zones. These zones were classified as RESIDENTIAL, COMMERCIAL, MIXED, PUBLIC, GREEN and OTHER. From the names assigned to the classes, characteristics of the zones should be understood. Examples of MIXED zones are MOMINPURA, GANDHIBAG, MIDDLE, BAGADGANJ, BASTI, AZANSHAH, DHANTOLI, DAGA LAYOUT, MOHAN NAGAR, SADAR, TEMPLE ROAD, VIJAY CLUB, RAVI NAGAR, HINGNA RD etc. which have both resident population and commercial activities. PUBLIC zones have mostly government offices, educational institutes, hospitals, courts etc. OTHER zones are Railway Stations & Yards, Government Lands, Bus Depots, Godowns, Wholesale Markets etc. GREEN zones are lakes, parks, forests, agriculture lands etc. Residential zones have habitat population. With this classification, it became logical to allocate population and to identify trip attraction zones. Word wise population of 2001 was reallocated among this zones after verifying their geographical location and ZONES. External TAZs are entry points to the city namely the Roads: WARDHA, HINGNA, AMRAVATI, KATOL, KORADI, KAMPTEE, BHANDARA, and UMRED.

Total Population of the study area and estimated daily vehicular trip production from all the internal and external zones during different horizon years are given in table 2.21. Employments locations (Zones) were identified from work place survey and Per Capita Trip Rate for 2012 was also derived from the Workplace Survey Data. Concentration of educational institutes, and medical facilities were identified from map and physically verified. In this manner, trip attraction zones were identified for different purposes (work, education and other) and were assigned ranks. Zone attraction weights were then derived by multiplying zone ranks with zone areas and then by normalizing it. Total trips for different purposes (work, education and other) trips attracted to zones were then by multiplying total purpose wise trips with zonal weights. Trips to be attracted for other horizon years were also estimated. Estimate of total population and trips produced of the study area are shown in table 2.20.

Popula	Population and Trip Production in lakhs during different horizon years										
	2001	2006	2011	2016	2021	2026	2031	2036	2041		
POP	21.49	23.01	24.77	26.62	28.60	30.40	32.27	34.29	36.18		
TRIP	17.53	19.01	22.47	24.48	26.65	28.73	30.93	33.33	35.69		
TRIP RATE	0.816	0.826	0.854	0.865	0.875	0.886	0.898	0.909	0.920		

Table 2.20

2.13 TRIP DISTRIBUTION

Trip ends are then distributed (using gravity model) among traffic zones according to the distance (or by GC). Inner philosophy of trip distribution is that a trip is originated due to population and is attracted to another zone due to facility available in that zone. Also if the cost of travel to that zone is higher than the cost of travel to another zone having the same facility, the trip will be attracted to another zone. Trip distribution (Gravity Model) model formula is given as under

$$T_{ij} = A_i P_j R_i C_j c_{ij}^{-\beta} e^{-\alpha c}_{ij} \dots (1)$$

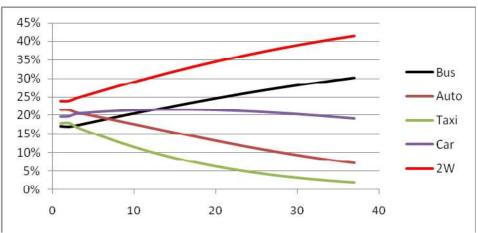
where T_{ij} are trips from zone I to j, c_{ij} is cost of travel from i to j, Pj = trips produced from zone j, A_i, = trips attracted to zone i, $R_i = 1/ \left[\sum_{j=1}^{n} P_j C_j c_{ij}^{-\beta} e^{-\alpha c}_{ij}\right] \& C_j = 1/ \left[\sum_{i=1}^{n} A_i R_i c_{ij}^{-\beta} e^{-\alpha c}_{ij}\right]$] and α , β are deterrence constants R_i, C_i are model constants which are fixed through iterative proces

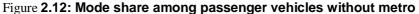
2.14 MODAL SPLIT

Economics based modal share model is developed to determine realistic share between public and private transport for two options namely with metro and without metro. Utility cost or the generalized cost of travel for each km is derived by assuming certain values of the parameters which constitute the vehicle wise total economic cost (generalized) cost. Items which are used for constructing the utility function are given in the top row of table 3. All times are converted to money cost by using value of time. These values are obtained from sample survey.

Table 2.21: Utility Model In	puts
------------------------------	------

Passenger Vehicle	Vehicle Speed km/hr	walking time in min	waiting time in min	Stoppage delay/km in min	Intersection delay per km in min	Travel Discomfort factor	Minimum Fare/OPC in Rs.	Minimum Fare/OPC applicable up to travel in KM	Running KM Fare/ OPC in Rs.	Time Cost in Rs. per Min
Bus	30	10	10	18%	19%	3%	3	3	0.4	0.9
Car	40	0	0	0%	19%	0%	15	3	2	0.9
Taxi	40	0	0	0%	19%	0%	20	2	5	0.9
2 Wheeler	40	0	0	0%	19%	10%	2	3	1	0.9
Auto	30	0	0	0%	19%	1%	10	2	3	0.9
Metro	35	10	2.5	10%	0%	-10%	6	2	0.5	0.9


Discomfort cost is subjective which depends upon energy loss while availing the service of that particular mode. 10% is allotted to 2 wheelers due to the physical tension and safety of the driver.


(-) 10% to metro passengers is indicative of comfort for hustle free journey. For without metro situation, Metro is not considered in the model, and for with metro situation the same is considered. Logit model formulation is given by:

$$P_m = \frac{e^{u_m}}{\Sigma e^{u_k}}$$

Where $\mathbf{u}_{\mathbf{m}}$ is utility function for mode m and $P_{\mathbf{m}}$ is share of mode m when number of competitive modes are 1,..k

In figure 5 mode share is shown for without metro situation. In figure 6 mode share between public and private modes is shown.

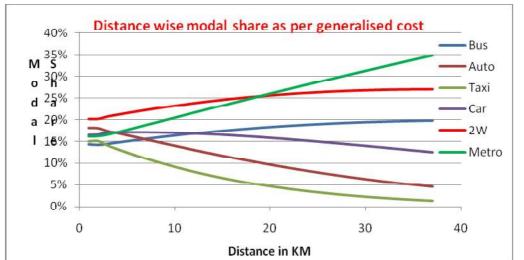


Figure 2.13 Mode share between public and private passenger vehicles with metro

2.15 SIMULTANEOUS MODAL SPLIT AND DISTRIBUTION

Trips between each zone pair) are divided into public and private modes using logit model (Para 2.4.4). Cars and Two Wheelers together are privates modes. All types of Buses, Auto Rickshaws and Taxis together are considered as Public Modes. Private mode trips use road only network while public modes trips use other mode network also. Rail and Metro both fall under public mode.

Trips for every zone pair for which distance is available are divided into public and private modes as per the distance for using Logit Model and distributed by using public and private network which are already separated from the complete transport Network. Before distribution, distribution parameters (β , α) are determined from observed average trip length (from work place survey average trip length was found as 8.47 km-see para 2.3.2). Thus Origin – Destination passenger trip matrices for all horizon years.

2.16 TRIP ASSIGNMENT

Several traffic assignment techniques such as capacity restrained, incremental loading, user equilibrium, dynamic assignment etc. are available. All of them are developed by considering (or hypothetically assuming) different kind of passenger behavior.

In this study, incremental loading assignment technique is used where OD matrix is partly assigned (10%-20% each time) and link cost is modified on the basis of the part assignment. Link loads obtained from each part assignment are added.

As metro is a part of the public network, a portion of the public trip matrix is separated for loading on metro network. If both origin and destination zone of a trip has at least one metro station, it is assumed shift from other modes to metro will be from 10%-50%

(longer the mutual distance if the OD pair, higher will be the shift to metro) from public OD. It is also assumed that trips from private OD will be shifted to metro OD.

This distribution cum assignment exercise will finally produce four OD matrices [(1) private mode to use road only network, (2) public mode to use road and rail only network, (3) public mode to use road, rail and metro network and (4) metro mode to use metro and road only network], assigned trips and routes for each OD pair.

2.17 DAILY RIDERSHIP ESTIMATION

Estimation of trips on metro line is done by using a special computer program which scans routes between each zone-pair which are generated from traffic assignment model during incremental loading traffic assignment algorithm. Each metro station is uniquely defined in the network and a continuous path from one metro station to another metro station (crossing several metro stations on the way) defines a metro route. Entry to and Exit from any other type of nodes (Road or Zone or Rail) are regarded as Boarding and Alighting of the concerned metro station.

2.18 NAGPUR METRO ALIGNMENT PLAN

For Nagpur city, two separate lines have been suggested with an interchange facility at SITABULDI. Length of line 1 (Automative-Mihan) is 20.5 km and the length of line-2 (Prajapati-Lokmanya) is 19.0 km. Alignments have been finalized after many considerations which include, traffic flow path, core area, connectivity, future landuse development plan and existing infrastructure. Line 1 shall connect two important gateways (Kamptee and Wardha). Mihan and International Airport and Cargo HUB are dream projects will also be connected to this line. Line 2 will also connect another two gateways (Bhandara and Hingna) of the city. The line is passing through populated residential zones, business and education centers.

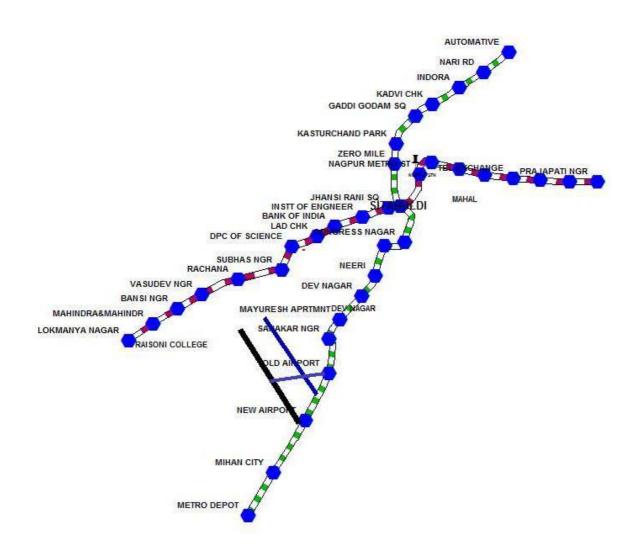


Figure 2.14 Alignment of Nagpur Metro

2.19 SUMMARY OUTPUT

Table 2.22: Summary Output(1)											
YEAR	2016	2021	2026	2031	2036	2041					
Population ¹⁰	2662338	2859852	3039907	3226854	3428976	3617956					

¹⁰ Zone wise population was projected from the population density (PD) of the zone observed in 2001. Different growth rates (GR) were applied on PD of the zone according to the class of the zone as per PD. For instance, if PD of a residential zone is below 100, GR=2.995%, if PD is between 100 and 150, GR is 25% less and so on. This

YEAR	2016	2021	2026	2031	2036	2041
Overall ANNUAL GROWTH	1.50%	1.48%	1.26%	1.23%	1.25%	1.10%
All trips	2714643	2951773	3189472	3442617	3719554	3995384
Trip rate	1.02	1.03	1.05	1.07	1.08	1.10
Metro trips	323858	362399	409236	462918	529193	588185
% Of all trips	11.93%	12.28%	12.83%	13.45%	14.23%	14.72%

In NMC area, in 2011, 17.26% decadal growth rate of population is observed which was lower than previous decadal growth rate (26%) – L&T-Ramboll Report,

2016	2021	2026	2031	2036	2041
144956	163371	183991	209180	240166	267617
178902	199028	225245	253738	289027	320568
323858	362399	409236	462918	529193	588185
6.271	6.284	6.257	6.283	6.256	6.307
7545	8526	9618	10987	12841	14332
8087	8992	10370	11755	13468	15060
	144956 178902 323858 6.271 7545	1449561633711789021990283238583623996.2716.28475458526	1449561633711839911789021990282252453238583623994092366.2716.2846.257754585269618	1449561633711839912091801789021990282252452537383238583623994092364629186.2716.2846.2576.28375458526961810987	1449561633711839912091802401661789021990282252452537382890273238583623994092364629185291936.2716.2846.2576.2836.2567545852696181098712841

Table 2.23: Summary Output(2)

Total daily boarding ridership in 2016 is estimated as 3.24 lakhs in which share of line 1 as 45% and line 2 as 55%. Average trip length is 6.27 km. Interesting observation is trips between the lines are about 30%. As a standalone line, line 1 will carry 95 thousand and line 2 will carry 1.29 lakhs trips.

scheme is applied for projecting population of different horizon years. Initial GR was adjusted to match population of 2011. In the table overall annual growth rate was shown.

Ambitious plan of creating New Nagpur International Airport & Mihan City has also been incorporated and it is seen about 25 thousand trips will be boarded from these two station in 2016.

Table 2.24. Summary Output(5)									
	2016	2021	2026	2031	2036	2041			
TRIPS WITHIN LINE 1	95401	109036	124096	141779	164010	182930			
TRIPS WITHIN LINE 2	129349	144695	165349	186332	212869	235884			
INTERCHANGE TRIP AT SITABULDI-NETAJI MARKET	99108	108668	119786	134810	152312	169372			
TOTAL RIDERSHIP/DAY	323858	362399	409231	462921	529191	588186			
PEAK HR RIDERSHIP	35624	39864	45016	50921	58211	64700			
TRIPS FROM NEW AIRPORT & MIHAN	25452	27648	29715	31870	34433	37129			
TO LINE 1	20019	21931	23573	25306	27429	29615			
TO LINE 2	5433	5717	6142	6564	7004	7514			

Table 2.24: Summarv Output(3)

2.19 DAILY RIDERSHIP

TABLE 2.25A: DAY BOARDING ON LINE 1 FROM AUTOMATIVE TO MIHAN

STATION	2016	2021	2026	2031	2036	2041
AUTOMATIVE	12208	14753	16621	19151	23028	27266
NARI RD	7996	9557	11922	14368	15433	16527
INDORA	6228	6970	7698	8615	9620	10648
KADVI CHK	7136	7804	8679	9674	10742	12085
GADDI GODAM SQ	658	777	898	1069	1276	1347
KASTURCHAND PARK	8868	9802	10792	11801	13026	14267
ZERO MILE	5131	5272	5848	6650	7212	8053
SITABULDI	24193	27638	31289	35060	40283	44166
CONGRESS NAGAR	32326	36881	41787	47153	54092	60746
RAHATE COLONY	3165	3529	4097	5576	8452	9337

Page 40 of 53

STATION	2016	2021	2026	2031	2036	2041
NEERI	2209	2451	2826	4518	6338	6926
DEV NAGAR	2138	2429	2744	3498	4253	5279
MAYURESH APRTMNT	2355	2626	2851	3122	3563	3898
SAHAKAR NGR	3547	3769	4616	5320	6516	7898
OLD AIRPORT	1346	1465	1608	1735	1899	2045
NEW AIRPORT	8174	8922	9420	9894	10343	10708
MIHAN CITY	12740	13877	14905	16018	17235	18429
METRO DEPOT	4538	4849	5390	5958	6855	7992

TABLE 2.25B: DAY BOARDING ON LINE 2 FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR

STATION	2016	2021	2026	2031	2036	2041
PRAJAPATI NGR	926	1007	1074	1202	1326	1453
VAISHNO DEVI CHK	1204	1280	1391	1522	1675	1815
AMBEDKAR CHK	2952	3209	3501	3788	4212	4621
TEL EXCHANGE	10872	12399	15768	20264	25376	32477
CHITAR OLI CHK	5755	6368	7352	9367	11479	13634
AGRASEN CHK	7571	9528	10502	11216	13978	14733
MAYO HOPITAL	7543	11288	13948	15595	20937	19835
NAGPUR METRO ST	30688	34508	40413	46352	52926	59849
NETAJI MKT	28481	29503	33139	36457	39813	43210
JHANSI RANI SQ	17144	19072	22388	26374	29477	34576
INSTT OF ENGNEER	21395	22328	23306	24675	26085	27510
BANK OF INDIA	12495	13452	14401	15297	16361	17573
LAD CHK	3556	3961	4234	4602	4988	5404
DPC OF SCIENCE	8875	9676	10475	11345	12237	13149

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

Page 41 of 53

STATION	2016	2021	2026	2031	2036	2041
SUBHAS NGR	1688	1924	2023	2193	2396	2574
RACHANA	1994	2233	2470	2745	3060	3454
VASUDEV NGR	2032	2272	2477	2746	3028	3346
BANSI NGR	1638	1907	2173	2442	2802	3179
MAHINDRA&MAHINDR	4385	4751	5115	5482	5897	6273
LOKMANYA NAGAR	7708	8362	9095	10074	10974	11903

TABLE 2.26:PEAK HOUR BOARDING ONLINE 1 FROM AUTOMATIVE TO MIHAN

STATION	2016	2021	2026	2031	2036	2041
LINE-1						
AUTOMATIVE	1343	1623	1828	2107	2533	2999
NARI RD	880	1051	1311	1580	1698	1818
INDORA	685	767	847	948	1058	1171
KADVI CHK	785	858	955	1064	1182	1329
GADDI GODAM SQ	72	85	99	118	140	148
KASTURCHAND PARK	975	1078	1187	1298	1433	1569
ZERO MILE	564	580	643	732	793	886
SITABULDI	2661	3040	3442	3857	4431	4858
CONGRESS NAGAR	3556	4057	4597	5187	5950	6682
RAHATE COLONY	348	388	451	613	930	1027
NEERI	243	270	311	497	697	762
DEV NAGAR	235	267	302	385	468	581
MAYURESH APRTMNT	259	289	314	343	392	429
SAHAKAR NGR	390	415	508	585	717	869
OLD AIRPORT	148	161	177	191	209	225
NEW AIRPORT	899	981	1036	1088	1138	1178
MIHAN CITY	1401	1526	1640	1762	1896	2027
METRO DEPOT	499	533	593	655	754	879

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

Page 42 of 53

STATION	2016	2021	2026	2031	2036	2041
LINE-2						
PRAJAPATI NGR	102	111	118	132	146	160
VAISHNO DEVI CHK	132	141	153	167	184	200
AMBEDKAR CHK	325	353	385	417	463	508
TEL EXCHANGE	1196	1364	1734	2229	2791	3572
CHITAR OLI CHK	633	700	809	1030	1263	1500
AGRASEN CHK	833	1048	1155	1234	1538	1621
MAYO HOPITAL	830	1242	1534	1715	2303	2182
NAGPUR METRO ST	3376	3796	4445	5099	5822	6583
NETAJI MKT	3133	3245	3645	4010	4379	4753
JHANSI RANI SQ	1886	2098	2463	2901	3242	3803
INSTT OF ENGNEER	2353	2456	2564	2714	2869	3026
BANK OF INDIA	1374	1480	1584	1683	1800	1933
LAD CHK	391	436	466	506	549	594
DPC OF SCIENCE	976	1064	1152	1248	1346	1446
SUBHAS NGR	186	212	223	241	264	283
RACHANA	219	246	272	302	337	380
VASUDEV NGR	224	250	272	302	333	368
BANSI NGR	180	210	239	269	308	350
MAHINDRA&MAHINDR	482	523	563	603	649	690
LOKMANYA NAGAR	848	920	1000	1108	1207	1309

TABLE 2.27::PHPDT LINK LOAD ON LINE 1 FROM AUTOMATIVE TO MIHAN

STATION	STATION	2016	2021	2026	2031	2036	2041
AUTOMATIVE	NARI RD	2014	2434	2742	3160	3800	4499
NARI RD	INDORA	3333	4009	4709	5530	6345	7225
INDORA	KADVI CHK	4344	5141	5960	6931	7910	8958
KADVI CHK	GADDI GODAM SQ	5432	6323	7264	8385	9516	10751
GADDI GODAM SQ	KASTURCHAND PARK	5411	6287	7220	8350	9480	10737

STATION	STATION	2016	2021	2026	2031	2036	2041
KASTURCHAND PARK	ZERO MILE	6475	7433	8448	9671	10896	12234
ZERO MILE	SITABULDI	6928	7831	8871	10156	11409	12804
SITABULDI	CONGRESS NAGAR	7545	8526	9618	10987	12841	14332
CONGRESS NAGAR	RAHATE COLONY	2687	2939	3260	3944	4906	5442
RAHATE COLONY	NEERI	2255	2453	2708	3218	3804	4247
NEERI	DEV NAGAR	1944	2108	2312	2604	2932	3311
DEV NAGAR	MAYURESH APRTMNT	1646	1769	1925	2097	2305	2519
MAYURESH APRTMNT	SAHAKAR NGR	1310	1396	1517	1648	1790	1953
SAHAKAR NGR	OLD AIRPORT	1896	2041	2279	2527	2865	3257
OLD AIRPORT	NEW AIRPORT	1691	1818	2034	2263	2577	2948
NEW AIRPORT	MIHAN CITY	2824	3054	3320	3597	3944	4329
MIHAN CITY	METRO DEPOT	739	790	880	974	1121	1309

TABLE 2.28: PHPDT LINK LOAD ON LINE 2 FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR

STATION	STATION	2016	2021	2026	2031	2036	2041
PRAJAPATI NGR	VAISHNO DEVI CHK	142	154	165	185	205	225
VAISHNO DEVI CHK	AMBEDKAR CHK	338	361	391	434	478	522
AMBEDKAR CHK	TEL EXCHANGE	816	881	960	1049	1163	1274
TEL EXCHANGE	CHITAR OLI CHK	2558	2871	3502	4329	5280	6559
CHITAR OLI CHK	AGRASEN CHK	3330	3700	4372	5422	6603	8035
AGRASEN CHK	MAYO HOPITAL	4371	5034	5797	6703	8125	9484
MAYO HOPITAL	NAGPUR METRO ST	4854	5787	6572	7537	9354	10090
NAGPUR METRO ST	SITABURDI	8087	8992	10370	11755	13468	15060
SITABURDI	JHANSI RANI SQ	5740	6506	7508	8857	9825	11307
JHANSI RANI SQ	INSTT OF ENGNEER	3510	4002	4501	5301	5881	6627

Page 44 of 53

Chapter 2 – Traffic Demand Forecast

STATION	STATION	2016	2021	2026	2031	2036	2041
INSTT OF ENGNEER	BANK OF INDIA	6850	7462	8079	8769	9499	10244
BANK OF INDIA	LAD CHK	5060	5543	6040	6605	7199	7822
LAD CHK	DPC OF SCIENCE	4537	4966	5415	5927	6466	7026
DPC OF SCIENCE	SUBHAS NGR	3154	3469	3785	4162	4565	4984
SUBHAS NGR	RACHANA	2905	3184	3487	3839	4211	4604
RACHANA	VASUDEV NGR	2587	2838	3094	3403	3725	4054
VASUDEV NGR	BANSI NGR	2259	2471	2694	2960	3235	3513
BANSI NGR	MAHINDRA&MAHINDR	1996	2164	2344	2566	2783	2999
MAHINDRA&MAHINDR	LOKMANYA NAGAR	1272	1380	1501	1662	1811	1964

2.21 More About MIHAN

Some description about MIHAN project is already given in section 2.4. SEZ and International Cargo HUB are two important projects in MIHAN. NIT and GoM they are working hard to make the project successful.

L&T-Ramboll (see Study Report submitted by them) has worked out population and Employment for MIHAN when the project will be operational. Shown below are the salient points from that study report.

- 1. Population density of Nagpur mc is 94/hectare in 2001
- 2. Only 10 zones had population density over 600/ hectare
- 3. Residential area allocated in MIHAN = 414 hectare
- 4. SEZ area in MIHAN = 1472 hectare
- 5. Total area =4354 hectare
- 6. Assumed to be operational in 2015
- 7. Employment in 2015 = 1.96 lakh
- 8. Employment in 2021 = 2.60 lakh
- 9. Employment in 2031 = 4.30 lakh
- 10. 40% employees will commute from Nagpur
- 11. Employment growth 2015-2021 = 4.9% (cumulative)
- 12. Employment growth 2021-2031 = 5.2% (cumulative)
- 13. Maximum Population density assumed = 600/ hectare
- 14. Maximum population in MIHAN which can be accommodated is 2.40 lakhs

According to L&T-RAMBOLL report, a maximum of 2.4 lakh population (PD=600/Hectare) is expected to live in MIHAN and due to SEZ and Airport Centric activity, employment that will be generated in 2015 is 1.96 lakhs.

As on date, there is hardly any population living in MIHAN and economic activity has not started. Therefore keeping a modest view, most likely population and employment figures are worked out by **assuming Population density as 150/hectare and Employment density as 40/hectare in 2016 and shall grow with 5% growth rate.** In MIHAN, Population and Employment that are expected are given as under:

	2016	2021	2026	2031	2036	2041	
POPULATION	60600	77343	98711	125983	160790	205213	
EMPLOYMENT	83440	106493	135915	173466	221391	282557	

Table 2.29: Expected Population and Employment in MIHAN

If, however, project is further delayed, these figures will be shifted towards right.

2.22 EFFECT OF MIHAN ON PROPOSED METRO RIDERSHIP

According to L&T-RAMBOLL report, 40% employees will commute here from outside MIHAN including Nagpur city but there is no mention of people who would likely to commute from MIHAN to Nagpur. Therefore, when completed, MIHAN will be a self sufficient industrial city where people will live and work.

It is expected there will be overall 30% commuting of both resident population and due to employment which will make an impact on the daily ridership of Metro.

This has been included in the forecasting process. Daily ridership projected from MIHAN stations are given in table 2.30 (already shown in bottom of table 2.30).

			•			
STATIONS	2016	2021	2026	2031	2036	2041
NEW AIRPORT	4824	5212	5660	6161	6668	7214
MIHAN CITY	14111	14939	16385	18072	19864	21779

2.23 FURTHER DEVELOPMENTS

On 03.08.2013, a meeting presided by Shri S K Lohia, JS-MoUD,GoI was held at Nagpur to discuss the DPR. In that meeting, JS-MoUD,GoI expressed that the FIRR of the project should be at least 8%. Recently, MoUD has also issued advisory that FIRR of Metro Project should not be below 8%.

On 1.10.2013, a presentation on the DPR was made by M/s NIT to The Chief Minister, Government of Maharashtra. He was of the opinion to avoid underground alignment in MIHAN and also construct Maintenance Depot in the land belonging to State Govt Land. Subsequently, on 21.10.2013, a joint inspection of the NS corridor was done by VC&MD-MADC, Chairman-NIT, and Director Business Development-DMRC. In this inspection, as desired by M/s NIT, NS corridor was slightly modified to move along Wardha Road and then west of Railway Track in MIHAN area. Location of Depot of NS Corridor has also been modified and now, depot has been located in MADC Land near Khapri Railway Station. Similarly, Depot of EW Corridor has also been shifted to SRP Land near proposed Lokmanya Nagar Metro Station.

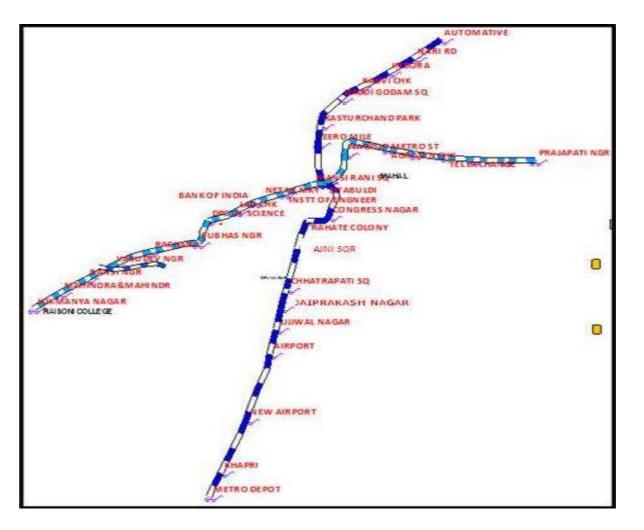
This has caused deletion of few earlier proposed metro stations on NS Corridor nas addition of new stations on the same.

2.24 ESTIMATION OF RIDERSHIP FOR FINAL ALIGNMENTS

After going through the DPR, NIT requested DMRC to provide an estimate of the daily ridership for the alternative alignment of line 1 (Automative to Khapri). The new alignment of line 1 is same up to Ajni Chowk as before but now will go straight along Wardha Road up to Khapri Rail Station (instead of going along Khamla Road towards Mihan). A diagram of the new alignment is shown in figure 2.14.

List of station names, chainage (mt) and inter station-distance(in km) between the stations are given in the table 2.31 Chainage and inter-station distances are shown as per map. Station names are given as per local area names.

S.No	Station Name	Chainage(in mt)	Inter Distance Between Two Stations in KM.
	DEAD END	-408.2	
1	AUTOMOTIVE SQRE	0.0	408.2
2	NARI ROAD	975.8	975.8
3	INDORA CHOWK	2139.7	1163.9
4	KADVI CHOWK	3181.2	1041.5
5	GADDI GODAM SQRE	4399.0	1217.8
6	KASTURCHAND PARK	5148.6	749.6
7	ZERO MILE	6175.5	1026.9
8	SITABURDI	6709.2	533.7
9	CONGRESS NAGAR	7897.2	1188.0
10	RAHATE COLONY	8682.6	785.4
11	AJNI SQUARE	10104.7	1422.1
12	CHHATRAPATI SQUARE	11146.3	1041.6


Table 2.31: Nagpur Metro Rail Project NS Corridor

Page 47 of 53

S.No	Station Name	Chainage(in mt)	Inter Distance Between Two Stations in KM.
13	JAIPRAKASH NAGAR	11811.5	661.1
14	UJWAL NAGAR	12846.6	1069.2
15	AIRPORT	13784.9	1344.1
16	NEW AIRPORT	16184.4	2783.1
17	KHAPARI	18460.6	2117.9
	DEAD END	19250.0	

In the above list it is seen that after NEERI station (old alignment), the line is going straight along Wardha Road up to Khapri. The alignment along Khamla Road is now modified to Wardha Road for the reason that earlier it was taken to Airport but now it is not considered necessary due to likely small ridership from Airport and high construction cost of Underground section. Hence the ridership has also got modified and given in the tables 2.32- 2.35. The modified phase-I metro network of Nagpur Metro is shown in fig :2.14

Figure 2.15 FINAL ALIGNMENT

I ADLE 2.32 SUIVIIVIE	TABLE 2.32 SOMMERT OF RIDERSHIP ON LINE TAND LINE 2										
BOARDING/RIDERSHIP (DAY)	2016	2021	2026	2031	2036	2041					
ON LINE 1(AUTOMATIVE- KHAPRI)	168361	185531	203720	224316	248419	277704					
ON LINE 2(PRAJAPATI- LOKMANYA)	184081	197908	215415	234577	260237	286031					
TOTAL OF BOTH	352442	383439	419135	458893	508656	563735					
AVERAGE TRIP LENGTH IN KM	6.419	6.453	6.494	6.533	6.521	6.522					
MAXIMUM PHPDT ON LINE 1	10089	10936	11915	12934	14286	15729					
MAXIMUM PHPDT ON LINE 2	7746	8460	9154	9906	10748	11882					

TRIPS WITHIN LINE 1	104350	117025	128865	141988	158191	178897
TRIPS WITHIN LINE 2	120074	129402	140559	152253	170010	187224
INTERCHANGE TRIP AT SITABULDI-NETAJI MARKET	128016	137010	149710	164650	180456	197612
TOTAL TRIPS	352440	383437	419134	458891	508657	563733

2.25 DAY BOARDING AND PHPDT

Day boarding on line 1 and line 2 stations estimated for different horizon years are shown in table 2.33.

TABLE 2.33 DAY BOARDING ON LINE 1 AND LINE 2 STATIONS

STATION	2016	2021	2026	2031	2036	2041
LINE 1	DAY	DAY	DAY	DAY	DAY	DAY
AUTOMOTIVE	15529	18254	20941	24527	27956	31977
NARI RD	7241	8893	10080	11619	13237	15415
INDORA	6986	7963	8833	9871	11186	12417
KADVI CHK	8031	8978	9851	10874	12137	13355
GADDI GODAM SQR	1227	1394	1558	1783	2146	2562
KASTURCHAND PARK	10196	10708	12193	14285	15696	17698
ZERO MILE	9096	9566	9967	9764	10436	10556
SITABULDI	29382	32953	35866	39152	42910	47138
CONGRESS NAGAR	35551	38283	41307	44414	48644	53355
RAHATE COLONY	8119	8880	9892	10869	12261	13499
AJNI SQR	5228	5723	6253	6862	7643	8426
CHHATRAPATI SQR	3123	3449	3743	4057	4413	4733
JAIPRAKASH NAGAR	2028	2233	2397	2588	2875	3158
UJWAL NAGAR	3041	3294	3585	3881	4307	4761
AIRPORT	1700	1856	2038	2238	2441	2634
NEW AIRPORT	5474	5888	6393	6927	7488	9614
KHAPARI	16409	17216	18823	20605	22643	26406

LINE 2	DAY	DAY	DAY	DAY	DAY	DAY
PRAJAPATI NGR	3308	3542	3763	4011	4265	4528
VAISHNO DEVI CHK	2979	3195	3408	3637	3893	4163
AMBEDKAR CHK	3390	3614	3867	4142	4430	4731
TEL EXCHANGE	11406	11813	12858	14015	15876	18778
CHITAR OLI CHK	9078	9787	10514	11341	12737	14646
AGRASEN CHK	6332	6791	7286	7826	8501	9347
MAYO HOPITAL	4766	5107	5522	5970	8712	10497
NAGPUR METRO ST	21637	24020	26963	30459	35433	40545
NETAJI MKT	23787	24857	27275	29958	32621	34899
JHANSI RANI SQR	17031	17851	19633	21844	24245	26991
INSTT OF ENGNEER	23662	25423	27198	28660	30460	31749
BANK OF INDIA	17778	19226	20676	22215	23981	25584
LAD CHK	3506	3803	4110	4413	4777	5136
DPC OF SCIENCE	9811	10750	11693	12714	13772	14855
SUBHAS NGR	1916	2120	2287	2472	2681	2868
RACHANA	2173	2430	2728	2997	3473	3844
VASUDEV NGR	4818	5356	5826	6326	6921	7449
BANSI NGR	3083	3441	3771	4121	4491	4850
MAHINDRA&MAHINDR	4757	5154	5548	5956	6382	6817
LOKMANYA NAGAR	8863	9628	10489	11500	12586	13754

Change about the boarding pattern is also investigated. On line 1, boarding from Automative to Kasturba Chk is increased from 49663 to 56190 (+6557), from Zero mile to Congress Nagar is increased from 69791 to 80802 (+11011), from Rahate Colony to Khapri is increased from 43917 to 48539 (+4622). Total increase is 22190.

On line 2, boarding from Prajapati to Agrasen Chowk is increased from 33791 to 38742 (+4951), from Mayo Hospital to Netaji Market boarding is decreased from 75299 to 53984 (-21315), from Jhansi Rani Sqr to DPC of science boarding is increased from 68489 to 77053 (+8564) and from Subhash Nagar to Lokmanya Nagar boarding is increased from 21449 to 28129 (+6680). Increase of boarding at Sitabuldi is 5315 and decrease at Netaji Market is 4646.

PHPDT on line 1 is increased from 8526 to 10936 (between Sitabuldi and Congress Nagar) while on line 2 PHPDT is decreased from 8992 to 7970 (between Netaji Market and Nagpur Railway Station) as this stretch will not be used by line 1 passengers as in old alignment. Maximum PHPDT on line 2 is between Institute of Engineers and Bank of India Stations PHPDT is 8460 (old alignment PHPDT was 7462 on this stretch). Interchange trip is increased from 53879 to 68505 (one way).

It is seen that in old alignment (via Khamla Road) case, trips from line 1 were diverting to line 2 via Sitabuldi-Netaji Market interchange and in new alignment (via Wardha Road) trips are going straight to Sitabuldi and beyond due to change of influenced zones. Hence this dip of PHPDT on this stretch is expected. The stretches on line 1 from Zero mile to Sitabuldi and on line 2 from Meyo Hospital to Netaji Market are parallel with average distance between them is 0.8 km. Traffic zones falling in this area are commercial and office zones including Nagpur rail station.

PHPDT load on line 1 (from Automative to Khapri) is given in table 2.34.

STATION	STATION	2016	2021	2026	2031	2036	2041
AUTOMOTIVE	NARI RD	2561	3010	3453	4045	4611	5274
NARI RD	INDORA	3754	4476	5115	5960	6792	7815
INDORA	KADVI CHK	4885	5767	6547	7562	8609	9833
KADVI CHK	GADDI GODAM SQR	6039	7042	7945	9098	10325	11719
GADDI GODAM SQR	KASTURCHAND PARK	6059	7021	7914	9092	10333	11743
KASTURCHAND PARK	ZERO MILE	7326	8313	9379	10804	12132	13724
ZERO MILE	SITABULDI	8272	9225	10297	11631	13002	14572
SITABULDI	CONGRESS NAGAR	10089	10936	11915	12934	14286	15729
CONGRESS NAGAR	RAHATE COLONY	5288	5728	6305	6918	7688	8477
RAHATE COLONY	AJNI SQR	4513	4876	5338	5854	6476	7149
AJNI SQR	CHHATRAPATI SQR	3935	4241	4641	5084	5607	6185
CHHATRAPATI SQR	JAIPRAKASH NAGAR	3561	3822	4185	4590	5070	5608
JAIPRAKASH NAGAR	UJJWAL NAGAR	3289	3520	3861	4241	4680	5179
UJWAL NAGAR	AIRPORT	2939	3136	3441	3787	4177	4624
AIRPORT	NEW AIRPORT	2735	2911	3193	3513	3878	4302
NEW AIRPORT	KHAPRI	2140	2267	2489	2748	3049	3660

TABLE 2.34 LINE 1 PHPDT FROM AUTOMATIVE TO KHAPRI

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

PHPDT load on line 2 (from Prajapati nagar to Lokmanya nagar) is given in table 2.35.

TABLE 2.35 LINE 2 PHPDT FROM PRAJAPATI NAGAR TO LOKMANYA NAGAR
--

STATION	STATION	2016	2021	2026	2031	2036	2041
PRAJAPATI NGR	VAISHNO DEVI CHK	481	517	549	585	621	659
VAISHNO DEVI CHK	AMBEDKAR CHK	903	971	1033	1102	1174	1250
AMBEDKAR CHK	TEL EXCHANGE	1378	1479	1578	1685	1803	1925
TEL EXCHANGE	CHITAR OLI CHK	2919	3084	3333	3607	4003	4601
CHITAR OLI CHK	AGRASEN CHK	4090	4356	4703	5094	5542	6330
AGRASEN CHK	MAYO HOPITAL	4843	5167	5572	6037	6544	7386
MAYO HOPITAL	NAGPUR METRO ST	5288	5649	6097	6610	7540	8297
NAGPUR METRO ST	SITA BURDI	7341	7970	8754	9675	10748	11882
SITA BURDI	JHANSI RANI SQR	6141	6691	7346	8188	9050	10064
JHANSI RANI SQR	INSTT OF ENGNEER	4038	4486	4912	5458	6001	6640
INSTT OF ENGNEER	BANK OF INDIA	7746	8460	9154	9906	10716	11528
BANK OF INDIA	LAD CHK	6114	6693	7275	7898	8610	9314
LAD CHK	DPC OF SCIENCE	5601	6147	6684	7269	7936	8588
DPC OF SCIENCE	SUBHAS NGR	4072	4472	4870	5301	5808	6297
SUBHAS NGR	RACHANA	3787	4157	4530	4934	5410	5871
RACHANA	VASUDEV NGR	3494	3828	4159	4527	4932	5341
VASUDEV NGR	BANSI NGR	2714	2960	3217	3504	3813	4136
BANSI NGR	MAHINDRA& MAHINDR	2212	2400	2603	2833	3082	3346
MAHINDRA& MAHINDR	LOKMANYA NAGAR	1435	1559	1698	1862	2042	2236

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

Page 52 of 53

Salient features of the two alternatives are shown in table 2.36.

TABLE 2.36 COMPARISON OF SALIENT FEATURES BETWEEN TWO ALTERNATIVES
(Voar 2021)

SUMMERY	NEW ALIGNMENT (STRAIGHT ALONG WARDAHA ROAD)	OLD ALIGNMENT (ALONG KHAMLA ROAD)
LINE 1 LENGTH	19.250 KM	21.833 KM
LINE 2 LENGTH	18.557 KM	18.266. KM
BOARDING/RIDERSHIP (DAY)	YEAR 2021	YEAR 2021
ON LINE 1 (AUTOMATIVE- MIHAN/KHAPRI)	185531	163371
ON LINE 2(PRAJAPATI- LOKMANYA)	197908	199028
TOTAL OF BOTH	383439	362399
AVERAGE TRIP LENGTH IN KM	6.453	6.284
MAXIMUM PHPDT ON LINE 1	10936	8526
MAXIMUM PHPDT ON LINE 2	8460	8992
TRIPS WITHIN LINE 1	117025	109036
TRIPS WITHIN LINE 2	129402	144695
INTERCHANGE TRIP AT SITABULDI-NETAJI MARKET	137010	108668
AVERAGE TRIP LENGTH IN KM	6.45	5.78

It is observed that ridership wise there shall be no loss (rather a net gain of 22190 trips). On line-1 maximum PHPDT will increase but on line 2 maximum PHPDT will be on another link. Maximum PHPDT will decrease on previous link (old alignment) due to shift of boarding from line 2 to line 1 in the CBD area as explained before. Some trips from/to Khamla side (stations from Dev Nagar to Old Airport) will now use line-1 stations from Chhatrapati Square to Airport. In 2021, average trip length will be 6.45 km for new alignment as against of 5.78 km in old alignment. Length of line-1 will decrease by around 2.5 km and also there will be cost reduction due to avoidance of the underground portion. Original alignment of line 1 was planned on the assumption of full development Mihan Industrial Area, Cargo Hub and International Airport and if these projects are not completed in time, original alignment of line 1 via old air port may not be so useful and economically not viable. Hence pragmatically speaking, the new alignment of line-1 is better.

CHAPTER 3

SYSTEM SELECTION

- 3.1 GENERAL
- 3.2 BENEFITS OF MASS TRANSPORT SYSTEM
- 3.3 METRO SYSTEM WORLD WIDE
- 3.4 WORLD METRO GRAPH
- 3.5 FAMOUS METRO SYSTEMS:-
- 3.6 OPTIONS FOR PUBLIC TRANSPORT SYSTEM
- 3.7 CHARACTERISTICS OF URBAN TRANSIT SYSTEM

TABLES

- TABLE 3.1SPREAD OF WORLD METRO RAIL SYSTEMS
- TABLE 3.2PASSENGER CARRYING CAPACITY PER TRAIN (TYPICAL) FOR DIFFERENT TRANSIT
SYSTEMS
- TABLE 3.3
 SUITABILITY MATRIX OF PUBLIC TRANSPORT MODES

FIGURES

- FIG. 3.1 TRANSPORT CAPACITY OF DIFFERENT MODES AS A FUNCTION OF HEADWAY
- FIG. 3.2 GRAPHICAL COMPARISONS OF THE MOST IMPORTANT CHARACTERISTICS WHICH INFLUENCE SELECTION OF DIFFERENT TECHNOLOGIES

Chapter - 3

SYSTEM SELECTION

3.1 GENERAL

The population growth in cities and urban centres has put a lot of pressure on the infrastructure of these cities. In rapidly developing countries like India the urban infrastructure is stretched to limit and requires very effective solutions. The rapid development in India is not unprecedented and such development earlier took place in several nations of Europe, America and in Japan. So several modes of urban mass transit are now available for solution to the problem of Urban Transit in Nagpur.

L&T Ramboll Consulting Engineers Limited had carried out the Comprehensive Traffic and Transportation Study and prepared Transportation Master Plan for Nagpur city commissioned by NMC. As a part of study they also recommended four Metro Corridors which have been discussed in Chapter-1 of this DPR..

3.2 BENEFITS OF MASS TRANSPORT SYSTEM

The main benefits addressed by mass transport are the mobility and freedom. The sustainability of mass transport has greater potential and major benefits occur through immediate means of helping the environment and conserving energy. In developing countries, like India, benefit through mass transit systems extend to urban poor with affordable fare structure when compared with costs incurred by private transportation on fuels, parking, congestion etc. The supply of planned and integrated mass public transport is the only way to relieve traffic congestion and reduce hours of delay on major travel corridors. Moreover, supply of metro rail system in Nagpur urban complex will mean a lot in terms of sustainable means of transport that meets the mobility and accessibility needs of people.

3.3 METRO SYSTEM WORLD WIDE

Metro system is used in metropolitan areas to transport large number of people at high frequency. Rapid transit evolved from railways during the late 19th Century. The first system opened was the Metropolitan Railway (London) which connected most of the main railway termini around the city. The technology swiftly spread to other cities in Europe and then to United States and other parts of the world. At present, more than 160 cities have built rapid transit systems, and about twenty five have new systems under construction. The system is seen as an alternative to an extensive road transport system with many motorways. The capital cost is high, with public financing normally required.

India is experiencing a rapid growth in both population and rate of urbanisation. Travel demand is increasing by 5% annually on average, leading to sharp increase in personal vehicles and overwhelming the limited transport infrastructure. A need was therefore felt to develop mass rapid transit systems in metro cities of India to reduce the burden on normal railways as well as road transport service providers. Major cities were facing a situation of rising population and increasing vehicles which had led to problems like congestion and pollution. To overcome these problems, Indian Railways took an initiative towards development of urban mass transit system by starting metro rail. Metro rail systems are operational in Delhi, Kolkata and Bangalore. Metro projects are taken in various cities like, Mumbai, Chennai, Hyderabad, Jaipur, Kolkata, Kochi.

A summary of metro network developed worldwide is given below in Table 3.1.

City	Country	Continent	Commencement	Network Length (km)	Daily Ridership (million)
Adana	Turkey	Asia	18-Mar-09	13.5	
Amsterdam	Netherlands	Europe	16-Oct-77	32.7	0.233
Ankara	Turkey	Asia	30-Aug-96	23.1	0.31
Antwerp	Belgium	Europe	25-Mar-75	7.6	
Athens	Greece	Europe	1954	52.0	0.937
Atlanta	USA	America	30-Jun-79	79.2	0.0932
Baku	Azerbaijan	Asia	6-Nov-67	32.9	0.482
Baltimore	USA	America	21-Nov-83	24.5	0.0356
Bangkok	Thailand	Asia	5-Dec-99	74.9	0.564
Barcelona	Spain	Europe	30-Dec-24	119.4	1.1
Beijing	China	Asia	1-Oct-69	337.0	3.99
Belo Horizonte	Brazil	America	1-Aug-86	28.1	
Berlin	Germany	Europe	18-Feb-02	147.4	1.39
Bielefeld	Germany	Europe	21-Sep-71	5.2	
Bilbao	Spain	Europe	11-Nov-95	40.6	0.238
Bochum	Germany	Europe	26-May-79	21.5	
Bonn	Germany	Europe	22-Mar-75	9.0	
Boston	USA	America	1 Sep 1897	60.5	0.4
Brasilia	Brazil	America	31-Mar-01	42.0	0.0438
Brussels	Belgium	Europe	20-Sep-76	32.2	0.364
Bucharest	Romania	Europe	16-Nov-79	67.7	0.304

 Table 3.1: Spread of World Metro Rail Systems

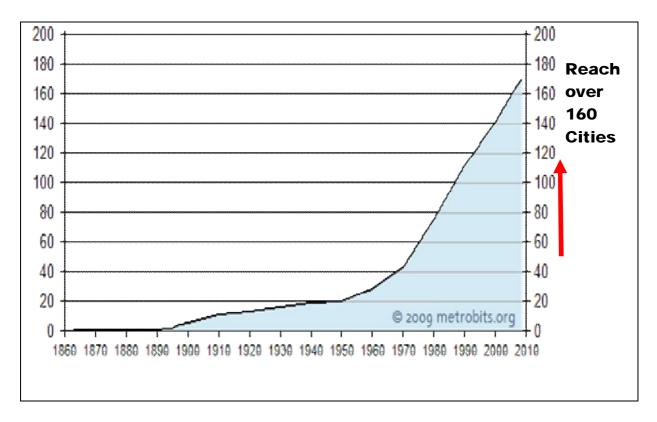
DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT **N**

				Network	Daily
City	Country	Continent	Commencement	Length	Ridership
				(km)	(million)
Budapest	Hungary	Europe	2 May 1896	33.0	0.814
Buenos Aires	Argentina	America	1-Dec-13	48.1	0.789
Buffalo	UŠA	America	18-May-85	8.4	
Bursa	Turkey	Asia	19-Aug-02	25.4	
Busan	South Korea	Asia	19-Jul-85	95.0	0.704
Cairo	Egypt	Africa	27-Sep-87	65.5	1.92
Caracas	Venezuela	America	27-Mar-83	60.5	1.25
Catania	Italy	Europe	27-Jun-99	3.8	
Changchun	China	Asia	Oct-02	17.0	
Charleroi	Belgium	Europe	21-Jun-76	17.5	
Chengdu	China	Asia	27-Sep-10	18.5	
Chennai	India	Asia	19-Oct-97	27.0	
Chiba	Japan	Asia	28-Mar-88	15.5	
Chicago	USA	America	6 Jun 1892	166.0	0.542
Chongqing	China	Anienca	18-Jun-05	19.5	0.342
Cleveland	USA	America	15-Mar-55	31.0	0.0137
Cologne	Germany	Europe	11-Oct-68	45.0	0.0137
Copenhagen	Denmark	Europe	19-Oct-02	21.0	0.126
Daegu	South Korea	Asia	26-Nov-97	53.9	0.120
Daejeon Dalian	South Korea	Asia	16-Mar-06	22.6	0.0795
	China	Asia	1-May-03	49.0	0.000
Delhi	India	Asia	24-Dec-02	187.3	0.838
Detroit	USA	America	Jul-87	4.8	
Dnepropetrovsk	Ukraine	Europe	29-Dec-95	7.1	0.0384
Dortmund	Germany	Europe	17-May-76	29.5	
Dubai	United Arab Emirates	Asia	9-Sep-09	52.1	
Duesseldorf	Germany	Europe	4-Oct-81	9.6	
Duisburg	Germany	Europe	11-Jul-92	14.3	
Edmonton	Canada	America	22-Apr-78	20.4	
Essen	Germany	Europe	5-Oct-67	20.2	
Frankfurt	Germany	Europe	4-Oct-68	20.5	
Fukuoka	Japan	Asia	26-Jul-81	29.8	0.34
Gelsenkirchen	Germany	Europe	1-Sep-84	5.5	
Genoa	Italy	Europe	13-Jun-90	5.2	
Glasgow	United Kingdom	Europe	14 Dec 1896	10.4	0.0411
Guadalajara	Mexico	America	1-Sep-89	24.0	
Guangzhou	China	Asia	28-Jun-99	231.9	1.85
Gwangju	South Korea	Asia	28-Apr-04	20.1	0.0466
Haifa	Israel	Asia	1959	1.8	
Hamburg	Germany	Europe	1-Mar-12	100.7	0.518
Hanover	Germany	Europe	28-Sep-75	18.6	
Helsinki	Finland	Europe	3-Aug-82	21.0	0.156
Hiroshima	Japan	Asia	20-Aug-94	18.4	0.0493
Hong Kong	China	Asia	1-Oct-79	188.1	3.62
Incheon	South Korea	Asia	6-Oct-99	29.5	0.2
Istanbul	Turkey	Europe	16-Sep-00	16.9	0.186
Izmir	Turkey	Asia	22-May-00	11.5	0.0822
Jacksonville	USA	America	30-May-89	6.9	
Kamakura	Japan	Asia	3-Mar-70	6.6	
Kaohsiung	Taiwan	Asia	9-Mar-08	42.7	0.0822

NOV 2013

				Network	Daily	
City	Country	Continent	Commencement	Length	Ridership	
				(km)	(million)	
Kazan	Russia	Europe	27-Aug-05	10.9	0.0192	
Kharkov	Ukraine	Europe	23-Aug-75	37.4	0.762	
Kiev	Ukraine	Europe	22-Oct-60	63.7	1.76	
Kitakyushu	Japan	Asia	9-Jan-85	8.8		
Kobe	Japan	Asia	13-Mar-77	30.6	0.332	
Kolkata	India	Asia	24-Oct-84	22.6	0.474	
Kryvyi Rih	Ukraine	Europe	26-Dec-86	18.0		
Kuala Lumpur	Malaysia	Asia	16-Dec-96	64.0	0.299	
Kyoto	Japan	Asia	1-Apr-81	31.3	0.345	
Las Vegas	USA	America	15-Jul-04	6.2		
Lausanne	Switzerland	Europe	24-May-91	13.7		
Lille	France	Europe	25-Apr-83	45.5	0.203	
Lima	Peru	America	13-Jan-03	10.0		
Lisbon	Portugal	Europe	29-Dec-59	41.0	0.488	
London	United Kingdom	Europe	10 Jan 1863	408.0	2.99	
Los Angeles	USA	America	30-Jan-93	59.3	0.129	
Ludwigshafen	Germany	Europe	29-May-69	4.0	0.120	
Lyon	France	Europe	28-Apr-78	30.7	0.499	
Madrid	Spain	Europe	17-Oct-19	286.3	1.78	
Manila		Asia	17-Oct-19 1-Dec-84	51.5	0.948	
Maracaibo	Philippines Venezuela		8-Jun-09	6.5	0.940	
		America			0.450	
Marseille	France	Europe	26-Nov-77	21.8	0.159	
Mecca	Saudi Arabia	Asia	13-Nov-10	18.1		
Medellin	Colombia	America	30-Nov-95	28.8	0.425	
Mexico City	Mexico	America	5-Sep-69	201.7	3.88	
Miami	USA	America	21-May-84	36.0	0.0493	
Milan	Italy	Europe	1-Nov-64	79.4	0.899	
Minsk	Belarus	Europe	26-Jun-84	30.3	0.718	
Monterrey	Mexico	America	25-Apr-91	31.5		
Montreal	Canada	America	14-Oct-66	69.2	0.6	
Moscow	Russia	Europe	15-May-35	302.0	6.55	
Mulheim	Germany	Europe	3-Nov-79	9.0		
Mumbai	India	Asia		171.0		
Munich	Germany	Europe	19-Oct-71	94.2	0.962	
Nagoya	Japan	Asia	15-Nov-57	89.0	1.17	
Naha	Japan	Asia	10-Aug-03	12.8		
Nanjing	China	Asia	27-Aug-05	84.7	0.4	
Naples	Italy	Europe	28-Mar-93	31.8	0.0795	
New York	USA	America	27-Oct-04	368.0	4.33	
Newark	USA	America	26-May-35	2.2		
Newcastle	United Kingdom	Europe	7-Aug-80	76.5	0.104	
Nizhny Novgorod	Russia	Europe	20-Nov-85	15.5	0.0904	
Novosibirsk	Russia	Asia	7-Jan-86	16.4	0.192	
Nuremberg	Germany	Europe	1-Mar-72	34.6	0.315	
Oporto	Portugal	Europe	7-Dec-02	21.7	5.010	
Osaka	Japan	Asia	20-May-33	137.8	2.36	
Oslo	Norway	Europe	22-May-66	62.0	0.214	
Palma de Mallorca	Spain	Europe	25-Apr-07	8.3	0.217	
Paris	France	Europe	19-Jul-00	213.0	4.05	
Perugia	Italy	Europe	29-Jan-08	3.0	4.00	

NOV 2013


			Network	Daily	
City	Country	Continent	Commencement	Length	Ridership
				(km)	(million)
Philadelphia	USA	America	4-Mar-07	62.0	0.192
Pittsburgh	USA	America	3-Jul-85	2.9	
Porto Alegre	Brazil	America	2-Mar-85	33.8	
Poznan	Poland	Europe	1-Mar-97	6.1	
Prague	Czech Republic	Europe	9-May-74	59.1	1.6
Pyongyang	North Korea	Asia	6-Sep-73	22.5	0.0959
Recife	Brazil	America	11-Mar-85	39.7	
Rennes	France	Europe	16-Mar-02	9.0	0.063
Rio de Janeiro	Brazil	America	5-Mar-79	42.0	0.37
Rome	Italy	Europe	10-Feb-55	39.0	0.907
Rotterdam	Netherlands	Europe	10-Feb-68	47.0	0.238
Rouen	France	Europe	17-Dec-94	2.2	0.200
Saint Louis	USA	America	31-Jul-93	73.4	
Saint Petersburg	Russia	Europe	15-Nov-55	110.2	2.25
Samara	Russia	Europe	26-Dec-87	10.2	0.0329
San Francisco	USA	America	11-Sep-72	166.9	0.293
San Juan	Puerto Rico	America	6-Jun-05	17.2	0.233
Santiago	Chile	America	15-Sep-75	102.4	1.67
Santago Santo Domingo	Dominican Republic	America	30-Jan-09	102.4	0.2
Santo Domingo Sao Paulo	Brazil				1.93
		America	14-Sep-74 16-Dec-71	69.7	0.573
Sapporo	Japan	Asia		48.0	0.573
Seattle	USA	America	18-Jul-09	22.2	0.450
Sendai	Japan	Asia	15-Jul-87	14.8	0.159
Seoul	South Korea	Asia	15-Aug-74	286.9	5.61
Seville	Spain	Europe	2-Apr-09	18.0	
Shanghai	China	Asia	10-Apr-95	423.0	3.56
Shenyang	China	Asia	27-Sep-10	27.8	
Shenzhen	China	Asia	28-Dec-04	69.1	0.362
Singapore	Singapore	Asia	7-Nov-87	129.7	1.81
Sofia	Bulgaria	Europe	28-Jan-98	18.0	0.0795
Stockholm	Sweden	Europe	1-Oct-50	105.7	0.841
Stuttgart	Germany	Europe	10-Jun-66	24.0	
Sydney	Australia	Oceania	1926	22.1	
Taipei	Taiwan	Asia	28-Mar-96	100.8	1.27
Tama	Japan	Asia	27-Nov-98	16.0	
Tashkent	Uzbekistan	Asia	6-Nov-77	36.2	0.195
Tbilisi	Georgia	Asia	11-Jan-66	26.3	0.252
Tehran	Iran	Asia	21-Feb-00	66.0	1.26
The Hague	Netherlands	Europe	16-Oct-04	27.9	
Tianjin	China	Asia	28-Mar-04	72.0	0.0411
Tokyo	Japan	Asia	30-Dec-27	304.5	8.7
Toronto	Canada	America	30-Apr-54	71.3	0.762
Toulouse	France	Europe	26-Jun-93	27.5	0.115
Turin	Italy	Europe	4-Feb-06	9.6	
Valencia	Venezuela	America	18-Oct-06	6.2	0.0493
Valencia	Spain	Europe	3-Oct-88	31.8	
Valparaiso	Chile	America	23-Nov-05	43.0	
Vancouver	Canada	America	3-Jan-86	69.5	0.203
Vienna	Austria	Europe	25-Feb-78	74.6	1.4
Volgograd	Russia	Europe	5-Nov-84	3.3	

NOV 2013

Chapter 03: System Selection

City	Country	Continent	Commencement	Network Length (km)	Daily Ridership (million)
Warsaw	Poland	Europe	7-Apr-95	22.6	0.345
Washington	USA	America	27-Mar-76	171.2	0.611
Wuhan	China	Asia	28-Sep-04	28.0	0.0356
Wuppertal	Germany	Europe	1-Mar-01	13.3	
Yekaterinburg	Russia	Asia	26-Apr-91	8.5	0.126
Yerevan	Armenia	Asia	7-Mar-81	12.1	0.0466

3.4 WORLD METRO GRAPH

3.5 FAMOUS METRO SYSTEMS:-

London

Taipei

Delhi

Meddellin

Paris

Kolkata

3.6 OPTIONS FOR PUBLIC TRANSPORT SYSTEM

- 3.6.1 The following systems are mainly available for Urban Mass Transit:
 - (i) Metro System: Metro system is a grade separated dedicated system for high peak hour traffic densities exceeding 40,000 PHPDT. It is characterized by short distances of stations spaced at 1 km, high acceleration and declaration and scheduled speeds of 30-35 kmph.
 - (ii) Light Rail Transit: Modern trams-Street Cars running on Rails at grade or elevated with sharp curves of 24m radius. These are extremely popular and operating in large number of European countries. Generally the stations are spaced at 500m to 1 km and have high acceleration and deceleration characteristics. In most of the countries, they are operating at-grade with prioritized signaling at road inter-section.
 - (iii) Sky Train: This is an experimental rail based system under development by Konkan Railway.
 - (iv) Other Rail Based Systems: A number of options are available but have not been introduced in India. Some of these are very briefly mentioned below:
 - (a) Maglev: This is an advanced Rail based transit system in which Magnetic Levitation is used to raise the vehicles above the rail surface. Rail wheel interaction is thus avoided and very high speeds are attainable. Maglev Levitation can either be due to attractive force or due to repulsive forces.
 - (b) Linear Induction Motor (LIM) Train: This is also an advanced Rail based transit system in which propulsion is through a Linear Induction Motor whose stator is spread along the track. The rotor is a magnetic material provided in the under frame of train. In the technology the tractive force is not transmitted through rail-wheel interaction, and so there is no limitation on account of adhesion. This technology is most appropriate for turnouts, as the height of the tunnel can be reduced to lower height of cars.
 - (v) Monorail: Monorail trains operate on grade separated dedicated corridors with sharp curves of up to 70m radius. This is a rubber tyred based rolling stock, electrically propelled on concrete beams known as guide-ways. The system is extremely suitable in narrow corridors as it requires minimum right of way on existing roads and permits light and air and is more environmental friendly. This is prevalent in several countries for traffic densities of over 20,000 PHPDT.
 - (vi) Bus Rapid Transit System: This system involves operation of buses on a dedicated corridor (except of traffic integration) at a high frequency to achieve PHPDT.

For providing a very high transport capacity say 20,000 PHPDT, about 200 buses shall be required per hour *i.e.*, at headway of 20 seconds. Such a high PHPDT can be achieved by providing two lanes of traffic in each direction and elimination of traffic intersection on the route.

- (vii) Automated Guide way Transit System: The term is used for systems other than conventional rail based system on grade separated guide ways. The system can be rail based or rubber tire based but fully automated guided systems with driver less operation.
- 3.6.2 The salient features of the various Transit Systems are summarized as under:-

System	LRT (Light Rail Transit) (elevated)	AGT (Automated Guide way Transit)	Straddle type Monorail	
Exterior of Vehicle				
	It is a transport system that runs on the exclusive beam slab track mainly built over highways.	It is a new transport system that runs on the exclusive track built on elevated structure with lightweight vehicle.	It is a new transport system that runs straddling on the exclusive beam track mainly built over highways.	
Rolling stock				
Length (m)	30.0 (articulated type)			
Width (m)	2.5			
Height (m)	3.7			
Number of doors	3			
Wheel arrangement	2-2-2			
Weight (tare) (ton)	44			
Axle load (max)	10tf			
Type of car load	Concentrated load	Concentrated load	Concentrated load	
Running gear and track structure				
Traction system	Rotary Motor and steel wheel	Rotary Motor and rubber tire	Rotary Motor and rubber tire	
Brake system	Electric brake and hydraulic brake	Electric brake and air brake	Electric brake and air brake	
Guidance System	Steel rail	Lateral pinched Guidance	Guide Wheel (Rubber)	
Power collector	Catenary	Conductor rail	Conductor rail	
Voltage	D.C. 750 V	A.C. 750 V (three phase)	D.C. 1,500 V	
Track	Steel rail	Concrete slab	Track beam	

System LRT (Light Rail Transit) (elevated)		AGT (Automated Guide way Transit)	Straddle type Monorail
Switch			
constitution	Switch and crossing	Lateral pinched switch	Flexure track beam
The Operation Characteristic			
Maximum speed	80 km/h	80 km/h	80 km/h
Schedule speed	30 km/h	30 km/h	30 km/h
Minimum curve radius			
	30m	30m	70m
Maximum gradient	4 %	6 %	6 %
Acceleration	3.5km/h/s	3.5km/h/s	3.5km/h/s
Deceleration Service brake	3.5km/h/s	4.8km/h/s	4.0km/h/s
Emergency brake	4.5km/h/s	6.0km/h/s	4.5km/h/s
Automatic Train operation	There is few example of it.	It has been developed aiming for automated operation. There are many examples of automated operation including driverless operation.	There are three cases of ATO operation in Japan.
Transportation capacity			
1 car seat	60		45
standing	90		60
total	150 (30m)	60 (L=9m)	105 (L=15m)
4 car seat	120		180
standing	180		240
total	300 (30m+30m)	360 (6 car L=54m)	420 (L=60m)
8 car seat	240		360
standing	360		480
total	600 (30m+30m+30m+30m)	720 (12 car L=108m)	840 (L=120m)
8 car PHPDT (170% , headway 2.5 min)	24,480	17,300 (100%)	34,300
	It is possible to deal with over 24,480 PHPDT of demand. (train length 120m)	It is possible to deal with up to 11,600 PHPDT of demand. (train length 108m)	It is possible to deal with over 34,300 PHPDT of demand. (train length 120m)
Structure			
Superstructure	Concrete slab	Concrete slab	Track beam
Pier and foundation	Concrete	Concrete	Concrete
Maintainability and cost			
Track	In addition to grinding of surface of rails, track maintenance work will require	It has small maintenance of track.	It has small maintenance of track.

System	LRT (Light Rail Transit) (elevated)	AGT (Automated Guide way Transit)	Straddle type Monorail
	much time.		
Vehicle	Maintenance of rotary motor and grinding of steel wheels shall be necessary.	Maintenance of rotary motor and exchange of rubber tires after every 120,000 km running shall be necessary.	Maintenance of rotary motor and exchange of rubber tires after every 120,000 km running shall be necessary.
Effect on ambient surrounding and harmony with urban landscape			
Effect on ambient surrounding	Its noiseproof wheels make as small noise as rubber tires make.	Level Crossing between AGT and road is not available. This system, with rubber tires, makes small noise and vibration. Because its running surfaces are made of concrete slab, there remain problems like inhibition of sunshine or radio disturbance.	This system, with rubber tires, makes small noise and vibration.
urban landscape	This system is inferior to other systems in terms of landscape because overhead wires for power collection must be installed.	Because its superstructure is made of concrete slab, oppressing feeling of view is an issue.	This system is superior to AGT or LIM Train in terms of landscape because its superstructure consists of only track beams that have small section.
Emergency evacuation			
	Evacuation other train (end to end or side by side)	Evacuation other train (end to end or side by side)	Evacuation other train (end to end or side by side)
	Walk way	Walk way	Evacuation device
	In case of emergency, supporting vehicles will engage in rescue activities. If supporting vehicles cannot do that, it is possible for passengers to evacuate to nearest stations through evacuation passage by walk.	In case of emergency, supporting vehicles will engage in rescue activities. If supporting vehicles cannot do that, it is possible for passengers to evacuate to nearest stations through evacuation passage by walk.	In this system, supporting vehicles are needed for passengers' emergency evacuation, which is of no matter because this straddle type system have many actual performances of running in Japan and has a established method for rescue.
Operation cost			
Electric energy			2.2kwh/car-km
Rolling stock cost			
/ car			7.5 Crors

Chapter 03: System Selection

System	Urban Maglev (HSST)	Metro/Subway	Bus Rapid transit
Exterior of Vehicle			
	It is a new transport system that runs on the exclusive beam slab track mainly built over highways.	It is Medium to Heavy Rail Transit (HRT) is a specialized electrically powered rail system carrying passengers within urban areas,	It is a bus operation generally characterized by use of exclusive or reserved rights-of- way (bus ways) that permit higher speeds and avoidance of delays from general traffic flows.
Rolling stock Length (m)			18 (articulated type)
Width (m)			2.0
Height (m)			3.5
Number of doors			2
Wheel arrangement	5 module / car	2-2 or 3-3	Independent Axles
Weight (tare) (ton)	15.0	41	12 to 16
Axle load (max)	2.3tf/m	17tfm	9tf to 15.3tf
Type of car load	Uniform load	Concentrated I.oad	Concentrated load
Running gear and track structure			
Traction system	Linear Induction Motor and Electromagnetic levitation system	Rotary Motor and steel wheel	Rubber tyre
Brake system	Electric brake and air brake	Electric brake and hydraulic brake and Regenerative brakes	Hydraulic Brakes
Guidance System	Electromagnetic levitation system	Steel Rail	None/ special guide wheels on kerbs
Power collector	Conductor rail	Catenary or Conductor rail	Not applicable
Voltage	D.C. 1,500 V	D.C. 1500 V, A.C. 25kv	None
Track	Steel rail (Electromagnetic levitation system)	Steel rail	Road
Switch			
constitution	Flexure track beam	Switch and crossing	Road Crossings
The Operation Characteristic			
Maximum speed	80 km/h	80 to 100 km/h	80 km/h

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

System	(HSST)		Bus Rapid transit
Schedule speed	30 km/h	35 km/h	20 km/h
Minimum curve radius	50m	100m	12m
Maximum gradient	6 %	6 %	
Acceleration	3.5km/h/s	3.5km/h/s	
Deceleration Service brake	3.5km/h/s	3.5km/h/s	
Emergency brake	4.5km/h/s	4.5km/h/s	
Automatic Train operation	There are cases of ATO operation in Nagoya Japan.	Automatic Train operation	No
Transportation capacity			
1 car seat	32	75	70
standing	42	125	40
total	74 (L=14m)	200(L=24m)	110(L=18)
4 car seat	128	300	
standing	172	500	
total	300 (L=56m)	800(L=96m)	
8 car seat	256	600	
standing	344	1000	******
total	600 (L=112m)	1600(L=192m)	*****
8 car PHPDT (170% , headway 2.5 min)	23,100 (max 160%)	50,000	
	It is possible to deal with over 23,100 PHPDT of demand. (train length 112m)	It is possible to deal with over 50,000 PHPDT of demand. (train length 112m)	It is possible to deal with max 6,000 PHPDT of demand.
Structure		Concrete slab	Deada
Superstructure Pier and foundation	Concrete slab	Concrete slab	Roads
	Concrete	Concrete	
Maintainability and cost Track	It has less maintenance of track as there is less physical movement.	It has less maintenance of track.	It requires maintenance of roads.
Vehicle	As it has no rotary motor, it is excellent on maintenance.	Maintenance of rotary motor and grinding of steel wheels shall be necessary.	Maintenance of engine and rubber tyres shall be necessary.
Effect on ambient surrounding and harmony with urban landscape			

NOV 2013

System	Urban Maglev (HSST)	Metro/Subway	Bus Rapid transit
Effect on ambient surrounding	There remain problems like inhibition of sunshine or radio disturbance, because its running surfaces are made of concrete slab.	This system is noisy due to steel wheel arrangement	Noise and Pollution Problems
urban landscape	This system is inferior to other systems in terms of landscape because overhead wires for power collection must be installed.	Because its superstructure is made of concrete slab, oppressing feeling of view is an issue. This system is inferior to other systems in terms of landscape because overhead wires for power collection must be installed.	No such issues
Emergency evacuation			
	Evacuation other train (end to end or side by side)	Evacuation other train (end to end or side by side)	No problems
	Walk way	Walk way	
	In case of emergency, supporting vehicles will engage in rescue activities. If supporting vehicles cannot do that, it is possible for passengers to evacuate to nearest stations through evacuation passage by walk.	In case of emergency, supporting vehicles will engage in rescue activities. If supporting vehicles cannot do that, it is possible for passengers to evacuate to nearest stations through evacuation passage by walk.	
Operation cost			
Electric energy	2.5kwh/car-km		
Rolling stock cost / car		6 to 9 Crores	Few Lakhs

3.7 CHARACTERISTICS OF URBAN TRANSIT SYSTEM

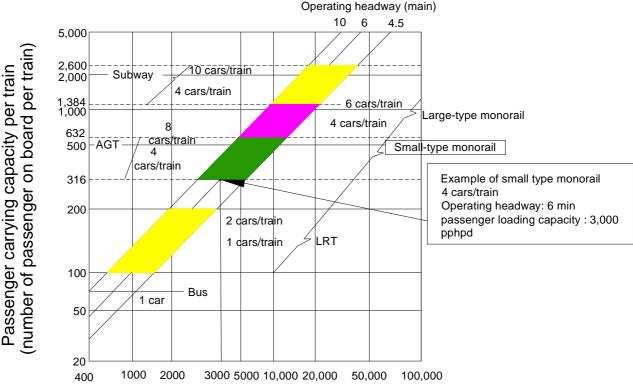
3.7.1 Transport Capacity

It is product of passenger carrying capacity of a train and maximum permissible frequency of train operation. The passenger carrying capacity is determined by number of cars (units/ coaches), which can be clubbed to form a train and dimensions of each car. To compare different systems uniform packing density is considered although for different systems different crush loading may be permissible. The passenger carrying capacity is dependent on the following:

(a) **Dimensions of vehicle:** Length and breadth- useful area. The cars vary from about 9m to 24m for most of systems. The width varies from 2.5m to 3.6m.

- (b) **Passengers per m²:** The normal to crush loading of most systems varies from 4 to 7 passengers per m².
- (c) No of Cars per train: The cars can be from 1 to 15 for most of the systems and the train length can be up to 315m.

S. No.	Transit System	ansit System (length 'm' x (No. of breadth 'm') passengers /car)		No of Cars /Train	Train Length 'm'	Train Capacity passenger /Train	
1	Large-type monorail	15 x 3	175	2 to 8	120	1400 for 8cars	
2	Heavy Metro Rail	21 to 24 x 2.8 to 3.6	250	8 to 15	190 to 315	2000 for 8cars	
3	Bus	18 x 2.5 to 3	70 to 100	1 to 2	18	100 per bus	
4	AGT	9 to 13 x 2.5 to 3	60 to 120	2 to 12	108	720	
5	LRT	18* x 2.65	145*	2 to 8	72	710*	
6	Maglev	16 x 2.6	170	2 to 8	128	1360 for 8 cars	


Table 3.2: Passenger carrying Capacity per Train (typical) for different Transit Systems

(Standee Occupancy rate: 0.14 m²/passenger)

* Smallest combination of modules for an independent LRT

- (d) Headway: The headway and frequency of train operation depends on Signaling and Rolling Stock characteristics viz. control systems, acceleration (tractive effort) and maximum permissible speed (adhesion). A graph showing the carrying capacity of different modes and passenger capacity is given below (see next page):
- (e) **Train Signaling and Control Systems:** The various train Signaling and control systems which help in increasing frequency of operation are:
 - > Automatic Train Operation and Control System (ATO)
 - > Automatic Train Supervision System (ATS)

Automatic Train Protection System (ATP)

Passenger loading capacity (in term of pphpd)

Figure 3.1 Transport Capacity of Different Modes as a Function of Headway

- (f) **Tractive effort and Acceleration:** By increasing the tractive effort and acceleration it is possible to increase transportation capacity both by improving the average speed and also by permitting higher frequency of train operation. The factors influencing tractive effort/ acceleration/ speed are:
 - > Adhesion
 - > Ratio of Motor coaches to trailer coaches
 - Traction Motor Rating
 - No of Traction Motors per car
 - Drive System

3.7.2 Geometric Characteristics:

- (i) Minimum Radius: Varies from 25m minimum for LRT, 70m for Monorail to 120m for Metro.
- (ii) Right of Way: The Right of way required for a Grade Separated (elevated) system is solely determined by the building line provided the piers can be accommodated on the central verge. For an At Grade system the Right of Way required is determined by lanes required for motorized/ non motorized vehicles in

addition to width of road required for the mass transit system. The minimum right of way required is about 22.5m.

(iii) Gradient: Ruling gradient varies from system to system.

> Environmental Characteristics Noise:

Rubber tyre on road is less noisy as compared to steel wheels on rails.

Aesthetics-Air and Sunshine: The at grade systems are least restrictive in exposing the corridors, buildings next to these corridors and people (on these corridors/ inhabiting buildings next to these corridors) to natural air and sunshine.

The effect of elevated systems on the existing buildings and their inhabitants is the worst. Comparatively the best system as far as this factor is considered is underground metro rail system.

Pollution: All electrically driven systems are better than diesel operated systems. This is where Rail based systems score over the Road based vehicles.

Graphical comparisons of the most important characteristics which influence selection of different technologies are depicted in the Figure 3.2 below:-

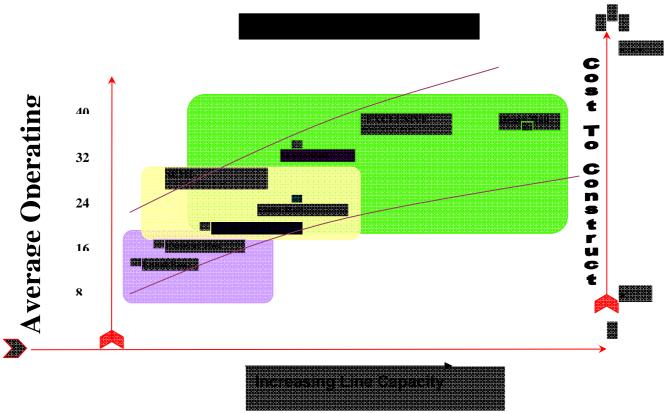


Fig-3.2

As shown, carrying capacity increases with the speed of the service and the cost to construct. The rail family can carry more passengers per hour at a faster speed, but most systems cost more to construct than do bus-based systems.

3.7.3 Need for a Grade Separated Transit System

- a) A large number of inter change points.
- **b)** High vehicular density.

system for these corridors.

- c) Excessive congestion and delays on the corridors, especially during peak hours.
- **d)** As the corridors are normally following busy areas of the city, it is not easy to find the required areas for depots, workshops.

Additional capacity needs to be created on the corridors to accommodate more traffic on the roads. Mere re-allocation of road space to provide for dedicated bus lanes for public transport may not serve the purpose due to presence of large number of private vehicles, which will continue to operate, and whose numbers will continue to rise. Further presence of large number of inter change points will severely restrict speed of operation of public transit system employing dedicated lanes. Considering projections of travel demand on these corridors it is essential to provide grade separated transit

In view of levels of services that will be required to meet the travel demand on the corridors, a fixed guide way, grade separated system is unavoidable.

3.7.4 Discussions on suitability of various modes

The following shows the suitability of various modes of public transport in terms of parameters.

Mode of transport	Noise Generation	Noise Effect on Road users	Noise Effect on Inhabitants	Aesthetics- Exposure to Sunshine	Aesthetics- Effect on Skyline	Energy Efficiency	Pollution
Metro Rail elevated	\checkmark	х	\checkmark			х	х
Metro Rail underground	Х	Х	х	Х	Х	х	Х
LRT elevated	\checkmark	Х	\checkmark	\checkmark		х	Х
LRT at Grade	\checkmark			Х	Х	х	Х
Monorail	Х	Х	х	Х	Х	\checkmark	Х
Subway elevated	\checkmark	Х		\checkmark		х	Х
AGT elevated	Х	Х	х	\checkmark		\checkmark	Х
LIM/Maglev elevated	Х	Х	х	\checkmark		\checkmark	Х
Bus At Grade	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	
Bus Elevated	Х	Х	х	\checkmark	\checkmark	\checkmark	\checkmark
	Adverse						
XI	No Adver	se Effect					

Table 3.3: Suitability Matrix of Public Transport Modes

13

3.7.5 Feasibility of other systems:

Maglev is an energy guzzler and the AGT is primarily a proprietary system. Sky train is yet on experimental stages.

3.7.6 LRT and Monorail System:

From traffic point of view LRT and monorail systems appears to be good enough to meet requirement of traffic.

3.7.7 Feasibility of Metro System for Nagpur:

From the 'Traffic Demand Forecast' it can be seen that peak hour peak direction trips (PHPDT) on the North South Corridor is 7375, 8526, 10987 and 14332 the year of 2016, 2021, 2031 and 2041 respectively. Similarly PHPDT on East West corridor in the year of 2016, 2021, 2031 and 2041 is 8087, 8992, 11755 and 15060 respectively.

Road-based systems can optimally carry up to a maximum of 8,000 PHPDT. Since the PHPDT assumed on the above corridors exceed 8,000, there can be two options namely 1) Mono Rail and 2) Light Capacity Metro. Mono rail can carry the PHPDT projected but this technology is not a tested one. The operation and maintenance cost is much higher that Light metro. The capital cost of Mono rail is also almost same as that of Light Metro with no experience of Mono rail in India. Even in the other countries, the Mono rail is being adopted only for small lengths and as feeder to Metro. Hence, keeping in view the above disadvantages, it is recommended to adopt an stable, tested and reliable Metro technology. However, for Nagpur it will be Light Capacity Metro System.

CHAPTER 4

GEOMETRIC DESIGNING PARAMETERS & ALIGNMENT DESCRIPTION

- 4.1 GENERAL
- 4.2 GEOMETRIC DESIGN PARAMETERS
- 4.3 TRACK STRUCTURE
- 4.4 RAIL SECTION
- 4.5 BALLASTLESS TRACK ON MAIN LINES
- 4.6 BALLASTLESS/BALLASTED TRACK IN DEPOT
- 4.7 TURNOUTS
- 4.8 BUFFER STOPS
- 4.9 RAIL STRUCTURE INTERACTION
- 4.10 ROUTE ALIGNMENT
- 4.11 TECHNICAL FEATURES

TABLES

- TABLE-4.1
 CANT, PERMITTED SPEED AND MINIMUM TRANSITION LENGTH FOR CURVES
- TABLE-4.2 TURN-OUTS
- TABLE-4.3 STATEMENT OF HORIZONTAL CURVES-N S CORRIDOR
- TABLE-4.4
 STATEMENT OF GRADIENTS-N S CORRIDORS
- TABLE-4.5
 STATEMENT OF HORIZONTAL CURVES-E W CORRIDOR
- TABLE-4.6 STATEMENT OF GRADIENTS-E W CORRIDORS

Chapter - 4

GEOMETRIC DESIGNING PARAMETERS AND ALIGNMENT DESCRIPTION

4.1 GENERAL

This chapter deals with geometrical standards adopted for horizontal and vertical alignments, route description, etc. The proposed corridors under Nagpur Metro Rail Project network will consist of Standard Gauge (SG) lines. For underground corridors, track centres are governed by spacing of tunnels and box design.

The geometrical design norms are based on international practices adopted for similar metro systems with standard gauge on the assumption that the maximum permissible speed on the section is limited to 80kmph. Planning for any higher speed is not desirable as the average inter-station distance is about 1.30km and trains will not be able to achieve higher speed.

The elevated tracks will be carried on box-shaped elevated decking supported by single circular piers, generally spaced at 25-m centres and located on the median of the road. The horizontal alignment and vertical alignment are, therefore, dictated to a large extent by the geometry of the road and ground levels followed by the alignment.

The underground tracks will be carried in separate tunnels to be drilled by Tunnel Boring Machine. Stations will, however, be constructed by cut and cover method.

4.2 GEOMETRIC DESIGN PARAMETERS

The design parameters related to the Metro system described herewith have been worked out based on a detailed evaluation, experience and internationally accepted practices. Various alternatives were considered for most of these parameters but the best-suited ones have been adopted for the system as a whole.

4.2.1 Horizontal Alignment

As far as possible, the alignment follows the existing roads. This leads to introduction of horizontal curves. On consideration of desirable maximum cant of 110 mm and cant

Chapter 04: Geometric Designing Parameters & Alignment Description

deficiency of 85 mm on Metro tracks, the safe speed on curves of radii of 400 m or more is 80 km/h. On elevated sections minimum radius of 160 m has been used at one location having speed potential upto 40 km/h. However in underground section desirable minimum radius of curve shall be 300 m for ease of working of Tunnel Boring Machine (TBM). However in exceptional situation on this project, curves of 200 m radius (safe speed of 55 km/h) have been adopted where New Austrian Tunneling Machine (NATM) shall be used.

For maximum permissible speed on curve with various radii, Table 4.1 may be referred.

Description	Underground Section	Elevated Section
Desirable Minimum radius	300 m	200 m
Absolute minimum radius	200 m (only c/c)	120 m
Minimum curve radius at stations	1000 m	1000 m
Maximum permissible cant (Ca)	125 mm	125 mm
Maximum desirable cant	110 mm	110 mm
Maximum cant deficiency (Cd)	85 mm	85 mm

Horizontal Curves

4.2.2 Transition Curves

It is necessary to provide transition curves at both ends of the circular curves for smooth riding on the curves and to counter act centrifugal force. Due to change in gradients at various locations in the corridor, it is necessary to provide frequent vertical curves along the alignment. In case of ballast less track, it is desirable that the vertical curves and transition curves of horizontal curves do not overlap. These constraints may lead to reduced lengths of transition curves at certain locations. The transition curves have certain minimum parameters:

• Length of Transitions of Horizontal curves (m)

Minimum : 0.44 times actual cant or cant deficiency (in mm), whichever is higher.

Desirable : 0.72 times actual cant or cant deficiency, (in mm), whichever is higher.

- Overlap between transition curves and vertical curves not allowed.
- Minimum straight between two Transition curves (in case of reverse curves): either 25 m or Nil.
- Minimum straight between two Transition curves (in case of same flexure curves): either 25 m or both curves should be converted in to the compound curve by introducing single transition between the two circulars.
- Minimum curve length between two transition curves: 25 m

4.2.3 Vertical Alignment and Track Centre

(a) Elevated Sections

The viaducts carrying the tracks will have a vertical clearance of minimum 5.5 m above road level. For meeting this requirement with the 'Box' shaped pre-stressed concrete girders, the rail level will be about 9.8 m above the road level. However, at stations which are located above central median, the rail level will be 13.5 m above the road level with concourse at mezzanine. These levels will, however, vary marginally depending upon where the stations are located.

The track center on the elevated section is kept as 4.1 m uniform throughout the corridor to standardize the superstructure, except at few locations, wherever scissors crossovers are planned, it is kept 4.5 meter.

(b) Underground sections

Rail level at midsection in tunneling portion shall be kept at least 12.0 m below the ground level. At stations, the desirable depth of rail below ground level is 13.5 m, so that station concourse can be located above the platforms.

Track center in underground sections are follows:		
Sections where stations are to be constructed		
by cut & cover and running section by TBM to		
Accommodate 12 m wide platform	:	15.05 m (for
lesser width of platform, track center to be reduced.)		
Sections where stations are to be constructed		
by NATM and running section by TBM to facilitate		
Construction of stations	:	22.00 m
Sections where stations as well as running section		
both are to be constructed by cut and cover method	:	4.50 m

(c) Gradients

Normally the stations shall be on level stretch. In limited cases, station may be on a grade of 0.1 %. Between stations, generally the grades may not be steeper than 3.0 %. However, where existing road gradients are steeper than 2 %, or for Switch Over Ramps gradient up to 4% (compensated) can be provided in short stretches on the main line.

(d) Vertical Curves

Vertical curves are to be provided when change in gradient exceeds 0.4%. However, it is recommended to provide vertical curves at every change of gradient.

(e) Radius of vertical curves:

•	On main line (desirable)	:	2500 m
	(Absolute minimum)	:	1500 m
•	Other Locations	:	1500 m
•	Minimum length of vertical curve	:	20 m

4.2.4 Design Speed

The maximum sectional speed will be 85 km/h. However, the applied cant, and length of transition will be decided in relation to normal speeds at various locations, as determined by simulation studies of alignment, vertical profile and station locations. Computerized train simulation studies need to be conducted with proposed gradients at the time of detailed design stage. This is with the objective of keeping down the wear on rails on curves to the minimum.

DADIUS	CANT			NCE BETWEEN T TRACKS
RADIUS	CANT	PERMISSIBLE SPEED	UNDERGROUND	ELEVATED AND AT-GRADE
meters	mm	kmph	mm	Mm
3000	15	80	3500	3650
2800	15	80	3500	3650
2400	20	80	3500	3650
2000	20	80	3500	3650
1600	25	80	3500	3650
1500	30	80	3500	3650
1200	35	80	3500	3650
1000	45	80	3500	3700
800	55	80	3550	3700
600	70	80	3550	3750
500	85	80	3600	3750
450	95	80	3600	3800
400	105	80	3650	3800
350	110	75	3650	3800
300	110	70	3700	3850
200	110	55	3800	3950
150*	110	45	4000	4050
150*	0	30	4000	4050
120*	110	40	4000	4150
120*	0	25	4000	4150
100**	110	40		

Table 4.1: Cant, Permitted Speed & Minimum Transition Length for Curves

Notes: (a) The track spacing is without any column/structure between two tracks and is with equal cant for both outer and inner tracks.

- (b) Track spacing shown is not applicable to stations which should be calculated depending on specific requirement.
- (c) Figures for any intermediate radius of curvature may be obtained by interpolating between two adjacent radii. For higher radii, values may be extrapolated.

4.2.5 Station Locations

Stations have been located so as to serve major passenger destinations and to enable

convenient integration with other modes of transport. However effort has also been made to propose station locations, such that inter station distances are as uniform as possible. The average spacing of stations is close to 1.2 km.

4.3 TRACK STRUCTURE

Track on Metro Systems is subjected to intensive usage with very little time for day-today maintenance. Thus it is imperative that the track structure selected for Metro Systems should be long lasting and should require minimum or no maintenance and at the same time, ensure highest level of safety, reliability and comfort, with minimum noise and vibrations. The track structure has been proposed keeping the above philosophy in view.

Two types of track structures are proposed for the corridors under Nagpur Metro Rail Project network. The normal ballasted track in Depot (except inside the Workshops, inspection lines and washing plant lines). The ballastless track is recommended on Viaducts and inside tunnels as the regular cleaning and replacement of ballast at such locations will not be possible.

For the depots, ballasted track is recommended as ballastless track on formation is not suitable due to settlement of formations. Ballastless track in depot is required inside the workshop, on inspection lines and washing plant lines.

From considerations of maintainability, riding comfort and also to contain vibrations and noise levels, the complete track is proposed to be joint-less and for this purpose even the turnouts will have to be incorporated in LWR/CWR.

The track will be laid with 1 in 20 canted rails and the wheel profile of Rolling Stock should be compatible with the rail cant and rail profile.

4.4 RAIL SECTION

Keeping in view the proposed axle load and the practices followed abroad, it is proposed to adopt UIC-60 (60 kg. /m) rail section. Since on main lines, sharp curves and steep gradients would be present, the grade of rail on main lines should be 1080 Head Hardened as per IRS-T-12-2009. As these rails are not manufactured in India at present, these are to be imported. For the Depot lines, the rails of grade 880 are recommended, which are available indigenously.

4.5 BALLASTLESS TRACK ON MAIN LINES

On the viaducts, it is proposed to adopt plinth type ballastless track structure with RCC derailment guards integrated with the plinths. Further, it is proposed to adopt fastening system complying to performance criteria laid down by Indian Railways on ballastless track structures, with a base-plate spacing of 60 cm. on viaducts.

In the underground sections, similar track structure with a base plate spacing of 70 cm is proposed on slab after 1st stage concrete.

4.6 BALLASTLESS/BALLASTED TRACK IN DEPOT

The ballastless track in Depot may be of the following types:

- Supported on steel pedestal for inspection lines.
- Embedded rail type inside the Workshop.

- Plinth type for Washing line.
- Track is to be laid on PRC sleepers with sleeper spacing of 65 cm. All the rails are to be converted into rail panels by doing flash butt/Thermit welding.

4.7 TURNOUTS

All turn-outs/crossovers on the main lines and other running lines shall be as under:

S. No.	Description	Turn out Type
01	Main Line	1 in 9
02	Depot/Yard Lines	1 in 7

Table 4.2: Turn-Outs	Table	4.2:	Turn-	Outs
----------------------	-------	------	-------	------

4.8 BUFFER STOPS

On main lines and Depot lines, friction buffer stops with mechanical impact absorption (non-hydraulic type) will be provided. In elevated portion, the spans on which friction buffer stops are to be installed will be designed for an additional longitudinal force, which is likely to be transmitted in case of Rolling Stock hits, the friction Buffer Stops.

4.9 RAIL STRUCTURE INTERACTION

For continuing LWR/CWR on Viaducts, the elevated structures will be adequately designed for the additional longitudinal forces likely to be transmitted as a result of Rail-Structure interaction. Rail structure interaction study will determine the need and locations of Rail Expansion Joints (REJ) required to be provided.

4.10 ROUTE ALIGNMENT

Two Corridors have been identified for implementation in phase I of Nagpur Metro Rail Project network as per details given underneath:-

- i) Automotive Square to KHAPRI
- ii) Prajapati Nagar to Lokmanya Nagar

The main features of these corridors along with the details of route alignment have been described below:-

4.10.1 Alignment from Automotive Square to KHAPRI

This corridor originates from Automotive Square on Kamptee Road; move along Kamptee Road and reach the intersection point of Amravati Road and Vardha Road, then after crossing Fly Over moves towards Munje Square, moves towards Dhantoli and along nala moves towards Empire/Dr Munje Marg, leads towards Congress Nagar T-Point, then on Rahate Colony Road and then falls on Wardha Road, leads towards NEERI, then moves along Wardha Road and then west of Railway Track in MIHAN area. And passes through 14m wide stretch of land between the railway boundary line and the road near proposed Container Depot.

There are 17 Statuions proposed on this alignments.

4.10.2 Prajapati Nagar to Lokmanya Nagar

This Corridor originates from Prajapati Nagar (meeting point of CA Road and Ring Road), then along Central Avenue Road moves towards Vaishno Devi Chowk, then Mayo Hospita and then takes left turn towards Nagpur Station Entry on Railway Feeder Road, then on Ghat Road alignment takes right turn and crosses over box culvert on existing railway line and falls on State Highway 255, Then after crossing Wardha Road alignment moves along North Ambajharee Road upto Ambajharee Lake and takes left State Highway 255, Then falls on Hingna Road and moves towards Lokmanya Nagar. There are 19 Stations proposed on this alignments.

4.10.3 Main features of Alignment from Automotive Square to KHAPRI (North-South Corridor)

Main features of Alignment from Automotive Square to KHAPRIare detailed below:

- a) This corridor provides direct metro connectivity to Automotive Square, RBI, Vidhan Sabha, NIT, Zero Mile, Nagpur University, Sitaburdi, Yashvant Stadium, Central Jai, NEERI, Wardha Road, Chhatrapati Shivaji Chowk, Airport, Khapri, MIHAN. Many other prominent places and Government offices are covered in this Corridor.
- b) Corridor is integrated with East West corridor at Sitaburdi and this integration provides metro connectivity to new development at Lokmanya Nagar.
- c) Corridor integrates with other modes of transport. Bus Terminus near Jhansi Chowk .
- d) Entire length (19.658 Km.) of this corridor is proposed as elevated except in 4.6 Km at grade after Airport Station and in MIHAN area near Khapri Railway Station.
- e) Total 17 stations have been proposed on this corridor; out of these stations 15 stations are elevated and remaining 2 stations are at grade..
- f) Future extension of corridor in both directions is feasible.

4.10.4 Main features of Alignment from Prajapati Nagar to Lokmanya Nagar (East-West Corridor)

Main features of Alignment from Prajapati Nagar to Lokmanya Nagar are detailed below

- a) This corridor provides direct metro connectivity to Central Avenue Road and North Ambajharee Road. This corridor covers many important location like Vardhman Nagar, Mangalwari, Mayo Hospital, Nagpur Railway Station, Santara Market, Sitaburdi, Jhansi Rani Chowk, LAD Square, Ambajharee Lake, Hingna Road, Lokmanya Nagar.
- b) Corridor is integrated with North South corridor at Sitaburdi and through that integration prominent location falling on NS Corridor get connected.

- c) Corridor integrates with other modes of transport such as Bus Stand near Jhansi Rani Square and Nagpur railway station
- d) Entire length of this corridor is proposed as elevated.
- e) There are total 19 stations on this corridor and all are elevated.

4.11 TECHNICAL FEATURES

4.11.1 Automotive Square to KHAPRI (North-South Corridor)

(a) Horizontal Curves : Horizontal curve details are as per the table below :

Table 4.3: Statement of Horizontal Curves (North-South Corridor)

Curve No	Direction	Radius	Deflection Angle		nsition ngth	Tangent	Curve Length	Total Curve Length	Straight between	Remarks
			DMS							Start of Alignment -408.17
1	Right	1002.05	15 53 53.325	25	25	139.921	278.044	328.044	123.879	
2	Left	1002.05	04 15 34.281	25	25	37.265	74.495	124.495	94.245	
3	Left	5002.05	00 27 08.585	15	15	19.747	39.494	69.494	269.95	
4	Right	9002.05	00 11 27.395	15	15	15	30	60.000	339.022	
5	Right	3002.05	00 42 36.030	20	20	18.601	37.201	77.201	544.771	
6	Left	3502.05	00 30 04.329	15	15	15.317	30.635	60.635	367.154	
7	Left	1002.05	06 45 54.827	25	25	59.228	118.318	168.318	301.632	
8	Right	232.05	06 16 17.226	54	54	12.712	25.4	133.400	86.568	
9	Left	422.05	03 26 24.925	50	50	12.675	25.341	125.341	148.858	
10	Left	252.05	08 29 03.979	40	40	18.696	37.324	117.324	238.516	
11	Right	1002.05	12 49 33.520	25	25	112.628	224.314	274.314	307.758	
12	Left	1402.05	01 08 18.096	25	25	13.929	27.856	77.856	158.651	
13	Left	202.05	08 02 56.113	55	55	14.215	28.384	138.384	87.306	
14	Left	1002.05	13 02 11.452	25	25	114.493	227.997	277.997	27.26	
15	Left	1502.05	01 14 10.942	20	20	16.207	32.412	72.412	138.678	
16	Right	1602.05	00 59 35.134	20	20	13.884	27.768	67.768	412.871	
17	Left	352.05	04 52 14.818	50	50	14.973	29.928	129.928	54.485	
18	Right	1002.05	06 40 35.630	25	25	58.45	116.767	166.767	77.21	
19	Left	502.05	05 45 16.536	40	40	25.233	50.424	130.424	316.656	
20	Left	182.05	27 01 23.322	55	55	43.745	85.863	195.863	27.279	
21	Right	202.05	12 35 59.711	40	40	22.306	44.433	124.433	26.194	
22	Left	1002.05	02 06 31.401	25	25	18.442	36.88	86.880	98.957	
23	Left	172.05	27 05 31.584	50	50	41.452	81.353	181.353	0	
24	Right	172.05	78 39 13.695	50	50	140.956	236.185	336.185	333.31	
25	Left	1002.05	05 59 38.020	25	25	52.462	104.828	154.828	140.502	
26	Right	162.05	66 12 09.831	55	55	105.645	187.242	297.242	121.779	
27	Left	162.05	30 15 35.895	55	55	43.815	85.584	195.584	148.782	

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

8/15

NOV 2013

Chapter 04: Geometric Designing Parameters & Alignment Description

Curve No	Direction	Radius	Deflection Angle		nsition ngth	Tangent	Curve Length	Total Curve Length	Straight between	Remarks
28	Left	172.05	19 52 02.909	50	50	30.132	59.659	159.659	166.886	
29	Right	1202.05	01 17 56.100	25	25	13.626	27.251	77.251	397.271	
30	Right	6002.05	00 19 34.888	20	20	17.094	34.188	74.188	317.309	
31	Left	1502.05	05 42 54.796	25	25	74.976	149.829	199.829	235.665	
32	Left	552.05	02 41 59.255	50	50	13.009	26.013	126.013	0	
33	Right	522.05	02 49 13.936	50	50	12.852	25.699	125.699	579.688	
34	Right	552.05	03 36 42.328	50	50	17.406	34.8	134.800	0	
35	Left	552.05	03 31 51.745	50	50	17.016	34.022	134.022	226.15	
36	Left	3002.05	00 48 18.068	20	20	21.09	42.179	82.179	1733.186	
37	Right	30002.05	00 03 22.518	10	10	14.728	29.457	49.457	435.34	
38	Right	232.05	16 10 34.304	55	55	32.976	65.514	175.514	0	
39	Left	262.05	07 11 41.399	55	55	16.475	32.907	142.907	437.137	
40	Left	402.05	08 05 13.876	50	50	28.421	56.749	156.749	322.908	
41	Right	402.05	09 15 09.718	55	55	32.534	64.927	174.927	125.738	
42	Left	1002.05	03 00 14.782	25	25	26.276	52.539	102.539	313.763	
43	Right	1002.05	01 56 22.429	25	25	16.962	33.921	83.921	169.615	
44	Left	1502.05	01 19 49.060	25	25	17.438	34.875	84.875	476.925	
45	Right	3002.05	00 31 05.547	20	20	13.576	27.152	67.152	436.794	
46	Right	5002.05	00 37 06.348	15	15	26.995	53.99	83.990	409.015	
47	Right	1002.05	06 27 04.991	25	25	56.474	112.829	162.829	112.905	
48	Left	202.05	08 30 29.460	45	45	15.029	30.004	120.004	0	
49	Right	402.05	05 55 36.776	40	40	20.813	41.59	121.590	460.532	
50	Left	1002.05	03 02 09.968	25	25	26.556	53.099	103.099	0	
51	Right	1002.05	03 35 02.177	25	25	31.35	62.68	112.680	591.009	
52	Left	1002.05	04 41 31.197	25	25	41.052	82.059	132.059	467.894	
53	Left	1002.05	02 35 16.664	25	25	22.634	45.261	95.261	101.752	End of alignment 19250

	Abstrac	t of Horizontal	Curves(N-S Co	orridor)	
S. No.	Radius (m)	Nos. Occurrences	Curved Length (m)	% w. r. t. total curved length	
1	>160m -200m	9	1748.707	24.10%	
2	>200m - 500m	10	1408.104	19.41%	
3	>500m - 1000m	19	2894.656	39.89%	
4	>1000m - 1500m	5	512.223	7.06%	
5	>1500m - 2000m	1	67.768	0.93%	
6	>2000m - 5000m	6	440.651	6.07%	

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

Chapter 04: Geometric Designing Parameters & Alignment Description

7	>5000m	3	183.645	2.53%
	Total	53	7255.75	100.00%

(b) Gradient

A statement showing details of gradients provide along the N S corridor is given in the following Table No. 4.4.

	Chai	nage		Rail	Level		_
S. No.	From	То	Length	From	То	Gradient	Remarks
1	-408.2	300.0	708.170	303.9	303.9	0.000%	Level
2	300.0	490.0	190.000	303.9	303.5	-0.211%	Fall
3	490.0	840.0	350.000	303.5	308.9	1.543%	Rise
4	840.0	1110.0	270.000	308.9	308.9	0.000%	Level
5	1110.0	1410.0	300.000	308.9	309.5	0.200%	Rise
6	1410.0	1740.0	330.000	309.5	311.5	0.606%	Rise
7	1740.0	2020.4	280.403	311.5	314.4	1.034%	Rise
8	2020.4	2270.0	249.598	314.4	314.4	0.000%	Level
9	2270.0	2460.0	190.000	314.4	310.7	-1.947%	Fall
10	2460.0	2820.0	360.000	310.7	310.1	-0.167%	Fall
11	2820.0	3050.0	230.000	310.1	318.4	3.609%	Rise
12	3050.0	3312.0	262.010	318.4	318.4	0.000%	Level
13	3312.0	3680.0	367.990	318.4	318.3	-0.027%	Fall
14	3680.0	3910.0	230.000	318.3	320.9	1.130%	Rise
15	3910.0	4080.0	170.000	320.9	320.9	0.000%	Level
16	4080.0	4258.4	178.443	320.9	323.2	1.289%	Rise
17	4258.4	4550.0	291.557	323.2	323.2	0.000%	Level
18	4550.0	4756.4	206.404	323.2	322.2	-0.484%	Fall
19	4756.4	5030.0	273.596	322.2	326.3	1.499%	Rise
20	5030.0	5280.0	250.000	326.3	326.3	0.000%	Level
21	5280.0	5800.0	520.000	326.3	322.4	-0.750%	Fall
22	5800.0	6050.0	250.000	322.4	319.6	-1.120%	Fall
23	6050.0	6264.0	214.000	319.6	319.6	0.000%	Level
24	6264.0	6572.8	308.756	319.6	310.9	-2.818%	Fall
25	6572.8	6930.0	357.245	310.9	310.9	0.000%	Level
26	6930.0	7200.0	270.000	310.9	305.2	-2.111%	Fall
27	7200.0	7400.0	200.000	305.2	310.9	2.850%	Rise
28	7400.0	7760.0	360.000	310.9	317.9	1.944%	Rise
29	7760.0	8090.0	330.000	317.9	317.9	0.000%	Level
30	8090.0	8340.0	250.000	317.9	317.4	-0.200%	Fall
31	8340.0	8530.0	190.000	317.4	321.5	2.158%	Rise
32	8530.0	8840.0	310.000	321.5	321.5	0.000%	Level
33	8840.0	9121.7	281.737	321.5	322.4	0.319%	Rise
34	9121.7	9340.0	218.263	322.4	320	-1.100%	Fall
35	9340.0	9680.0	340.000	320	316.1	-1.147%	Fall
36	9680.0	9900.0	220.000	316.1	315.3	-0.364%	Fall
37	9900.0	10205.0	305.000	315.3	315.3	0.000%	Level

Table 4.4: Statement of Gradients (N-S Corridor)

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

Chapter 04: Geometric Designing Parameters & Alignment Description

S. No.	Chai	nage	Longth	Rail I	_evel	Gradient	Domorko
5. INO.	From	То	Length	From	То	Gradient	Remarks
38	10205.0	10730.0	525.000	315.3	319.5	0.800%	Rise
39	10730.0	11283.4	553.428	319.5	319.5	0.000%	Level
40	11283.4	11670.0	386.572	319.5	320	0.129%	Rise
41	11670.0	11930.0	260.000	320	320	0.000%	Level
42	11930.0	12560.0	630.000	320	311	-1.429%	Fall
43	12560.0	12960.0	400.000	311	311	0.000%	Level
44	12960.0	13100.0	140.000	311	307.1	-2.786%	Fall
45	13100.0	13360.0	260.000	307.1	307.5	0.154%	Rise
46	13360.0	13680.0	320.000	307.5	313.3	1.813%	Rise
47	13680.0	14098.9	418.920	313.3	313.3	0.000%	Level
48	14098.9	14370.0	271.080	313.3	307.6	-2.103%	Fall
49	14370.0	14720.0	350.000	307.6	304.8	-0.800%	Fall
50	14720.0	15500.0	780.000	304.8	295.6	-1.179%	Fall
51	15500.0	15700.0	200.000	295.6	295.6	0.000%	Level
52	15700.0	16080.0	380.000	295.6	299	0.895%	Rise
53	16080.0	16330.0	250.000	299	299	0.000%	Level
54	16330.0	17080.0	750.000	299	307.6	1.147%	Rise
55	17080.0	17324.6	244.621	307.6	316	3.434%	Rise
56	17324.6	17550.0	225.379	316	316	0.000%	Level
57	17550.0	17740.0	190.000	316	308.5	-3.947%	Fall
58	17740.0	18020.0	280.000	308.5	310.7	0.786%	Rise
59	18020.0	18232.0	212.000	310.7	308.7	-0.943%	Fall
60	18232.0	18610.1	378.100	308.7	308.7	0.000%	Level
61	18610.1	19250.0	639.900	308.7	302.5	-0.969%	Fall
62	19250.0	20357.2	1107.242	302.5	292	-0.948%	Fall

	Abstract of Gradients(N-S Corridor)											
S. No.	Description	Nos. Occurrences	Length (m)	% w. r. t. total Alignment length								
1	Level	20	5233.013	26.62%								
2	> 0% to = 1%	22	9040.247	45.99%								
3	> 1% to = 2%	11	3340.303	16.99%								
4	> 2% to = 3%	5	1108.756	5.64%								
5	> 3% to = 4%	4	935.701	4.76%								
	Total	62	19658.2	100.00%								

4.11.2 Prajapati Nagar to Lokmanya Nagar (East-West Corridor) (a) Horizontal Curves: The details of horizontal curves is shown in Table 4.5: Table 4.5: Statement of Horizontal Curves (East-West Corridor)

Curve No	Direc- tion	Radius	Deflection Angle		sition Igth	Tangent	Curve Length	Total Curve Length	Straight between	Remarks
			DM S						66.102	
1	Right	202.05	37 10 46.630	55	55	67.957	131.112	241.112	172.073	Start of Alignment -392
2	Right	402.05	28 42 53.968	50	50	102.911	201.496	301.496	217.679	
3	Right	9002.05	00 10 19.132	15	15	13.51	27.021	57.021	381.216	
4	Right	1002.05	02 01 05.821	25	25	17.651	35.298	85.298	271.009	
5	Right	1169.05	00 00 07.186	25	25	0.02	0.041	50.041	25.558	
6	Left	1702.05	00 54 07.696	18	18	13.4	26.799	62.799	252.852	
7	Right	10002.05	00 12 45.237	10	10	18.554	37.107	57.107	200.823	
8	Left	7002.05	00 13 19.423	15	15	13.569	27.138	57.138	66.635	
9	Right	7002.05	00 13 05.332	20	20	13.33	26.66	66.66	1021.177	
10	Right	569.05	00 00 27.619	50	50	0.038	0.076	100.076	43.927	
11	Left	1012.05	01 25 23.106	25	25	12.569	25.137	75.137	28.087	
12	Right	397.05	00 00 13.516	55	55	0.013	0.026	110.026	83.8	
13	Left	502.05	03 17 15.703	55	55	14.408	28.808	138.808	192.455	
14	Right	297.05	00 00 58.433	48	48	0.042	0.084	96.084	0.298	
15	Right	3002.05	01 39 38.058	16	16	43.506	87.007	119.007	126.158	
16	Left	2002.05	00 45 17.113	20	20	13.187	26.373	66.373	151.853	
17	Left	1002.05	03 48 54.123	25	25	33.373	66.721	116.721	151.675	
18	Right	602.05	02 53 04.264	45	45	15.158	30.31	120.31	239.373	
19	Right	692.05	02 20 40.899	35	35	14.162	28.321	98.321	35.749	
20	Left	602.05	02 42 05.532	40	40	14.196	28.387	108.387	327.015	
21	Left	202.05	81 04 18.041	55	55	172.786	285.894	395.894	430.152	
22	Left	1052.05	01 35 05.786	25	25	14.552	29.102	79.102	0.117	
23	Right	1232.05	01 16 48.606	25	25	13.765	27.528	77.528	154.363	
24	Right	202.05	49 07 42.947	55	55	92.353	173.249	283.249	582.951	
25	Right	252.05	06 27 16.062	48	48	14.212	28.394	124.394	144.027	
26	Left	202.05	00 01 02.092	53.1	53.1	0.03	0.061	106.261	58.364	
27	Left	1002.05	02 03 21.390	25	25	17.98	35.957	85.957	149.618	
28	Right	802.05	02 52 10.786	40	40	20.09	40.171	120.171	55.329	
29	Left	852.05	01 56 34.348	35	35	14.448	28.893	98.893	249.973	
30	Left	1002.05	01 57 14.763	25	25	17.089	34.175	84.175	121.207	
31	Right	1002.05	02 39 41.054	25	25	23.277	46.545	96.545	319.866	
32	Right	602.05	02 41 41.338	50	50	14.161	28.316	128.316	264.291	
33	Left	1152.05	19 38 27.637	25	25	199.418	394.923	444.923	696.136	
34	Right	202.05	00 01 45.128	55.7	55.7	0.051	0.103	111.503	149.835	
35	Right	202.05	14 25 13.455	55	55	25.561	50.853	160.853	35.007	

Table 4.5

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

12/15

NOV 2013

Chapter 04: Geometric Designing Parameters & Alignment Description

Curve No	Direc- tion	Radius	Deflection Angle		sition igth	Tangent	Curve Length	Total Curve Length	Straight between	Remarks
36	Left	172.05	73 38 35.753	56	56	128.811	221.139	333.139	490.256	
37	Right	182.05	11 47 30.843	55	55	18.8	37.467	147.467	28.414	
38	Right	162.05	31 16 55.272	55	55	45.37	88.475	198.475	224.703	
39	Left	222.05	00 02 56.634	50	50	0.095	0.19	100.19	317.926	
40	Left	15002.05	00 07 51.774	15	15	17.157	34.313	64.313	360.846	
41	Left	9502.05	00 09 05.222	15	15	12.558	25.117	55.117	877.118	
42	Left	402.05	07 43 36.044	50	50	27.151	54.219	154.219	500.994	
43	Right	202.05	13 12 12.862	55	55	23.384	46.562	156.562	56.253	
44	Left	202.05	25 23 08.620	55	55	45.507	89.521	199.521	359.319	
45	Right	342.5	04 50 33.480	50	50	14.483	28.948	128.948	845.94	
46	Left	502.05	03 20 46.456	40	40	14.665	29.321	109.321	187.281	
47	Left	1002.05	09 09 50.512	25	25	80.306	160.27	210.27	0	18165 End of Alignment

	Abstract of Horizontal Curves(E-W Corridor)							
S. No.	Radius (m)	Nos. Curved Occurrences Length (m)		% w. r. t. total curved length				
1	>160m -200m	3	679.081	10.64%				
2	>200m - 500m	17	2918.441	45.72%				
3	>500m - 1000m	13	1453.44	22.77%				
4	>1000m - 1500m	5	726.731	11.39%				
5	>1500m - 2000m	2	129.172	2.02%				
6	>2000m - 5000m	1 119.007		1.86%				
7	>5000m	6	357.356	5.60%				

(c) Gradient

A statement showing details of gradients provide along the corridor is given in the following Table No. 4.6: -

S.	Chain	lage	Length	Rail Level		Cradiont	Remarks
No.	From	То	Lengui	From To Gradient		Reindiks	
1	-392.00	180.00	572.000	301	301	0.000%	Level
2	180.00	430.00	250.000	301	297.2	-1.520%	Fall
3	430.00	700.00	270.000	297.2	300.5	1.222%	Rise
4	700.00	1087.35	387.348	300.5	305.3	1.239%	Rise

Table 4.6: Statement of Gradients (East-West Corridor)

Chapter 04: Geometric Designing Parameters & Alignment Description

S.	Chair	age	Longth	Rail Level		Credient	Demerke
No.	From	To	Length	From	То	Gradient	Remarks
5	1087.35	1320.00	232.652	305.3	305.3	0.000%	Level
6	1320.00	1570.00	250.000	305.3	304.6	-0.280%	Fall
7	1570.00	1820.80	250.800	304.6	308.3	1.475%	Rise
8	1820.80	2078.76	257.955	308.3	308.3	0.000%	Level
9	2078.76	2440.00	361.245	308.3	308.9	0.166%	Rise
10	2440.00	2640.00	200.000	308.9	309.7	0.400%	Rise
11	2640.00	3020.00	380.000	309.7	311.6	0.500%	Rise
12	3020.00	3235.00	215.000	311.6	311.6	0.000%	Level
13	3235.00	3384.00	149.000	311.6	310.9	-0.470%	Fall
14	3384.00	3772.20	388.200	310.9	311.5	0.155%	Rise
15	3772.20	4180.00	407.800	311.5	311.5	0.000%	Level
16	4180.00	4340.00	160.000	311.5	311	-0.313%	Fall
17	4340.00	4652.53	312.525	311	319.5	2.720%	Rise
18	4652.53	4922.00	269.475	319.5	319.5	0.000%	Level
19	4922.00	5190.00	268.000	319.5	316.7	-1.045%	Fall
20	5190.00	5490.00	300.000	316.7	321.9	1.733%	Rise
21	5490.00	5750.00	260.000	321.9	321.9	0.000%	Level
22	5750.00	5940.00	190.000	321.9	325.5	1.895%	Rise
23	5940.00	6350.00	410.000	325.5	319.7	-1.415%	Fall
24	6350.00	6580.00	230.000	319.7	319.7	0.000%	Level
25	6580.00	6890.00	310.000	319.7	313.1	-2.129%	Fall
26	6890.00	7130.00	240.000	313.1	313.1	0.000%	Level
27	7130.00	7290.00	160.000	313.1	310.2	-1.813%	Fall
28	7290.00	7615.00	325.000	310.2	320.1	3.046%	Rise
29	7615.00	7856.99	241.990	320.1	320.1	0.000%	Level
30	7856.99	8200.00	343.010	320.1	313.9	-1.808%	Fall
31	8200.00	8523.50	323.499	313.9	313.9	0.000%	Level
32	8523.50	8770.00	246.502	313.9	311.6	-0.933%	Fall
33	8770.00	8965.00	195.000	311.6	315.4	1.949%	Rise
34	8965.00	9241.43	276.433	315.4	315.4	0.000%	Level
35	9241.43	9490.00	248.567	315.4	312.6	-1.126%	Fall
36	9490.00	9770.00	280.000	312.6	313.3	0.250%	Rise
37	9770.00	9965.00	195.000	313.3	316.9	1.846%	Rise
38	9965.00	10190.00	225.000	316.9	316.9	0.000%	Level
39	10190.00	10500.00	310.000	316.9	314.8	-0.677%	Fall
40	10500.00	10765.00	265.000	314.8	319.1	1.623%	Rise

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

14/15

NOV 2013

Chapter 04: Geometric Designing Parameters & Alignment Description

S.	Chain	lage	Longth	Rail Level		Gradient	Remarks	
No.	From	То	Length	From	То	Grauleni	Remarks	
41	10765.00	10990.00	225.000	319.1	319.1	0.000%	Level	
42	10990.00	11360.00	370.000	319.1	318.8	-0.081%	Fall	
43	11360.00	11845.00	485.000	318.8	329.5	2.206%	Rise	
44	11845.00	12130.00	285.000	329.5	329.5	0.000%	Level	
45	12130.00	12370.00	240.000	329.5	325	-1.875%	Fall	
46	12370.00	12710.00	340.000	325	336	3.235%	Rise	
47	12710.00	13160.00	450.000	336	336	0.000%	Level	
48	13160.00	13550.00	390.000	336	333.2	-0.718%	Fall	
49	13550.00	14060.00	510.000	333.2	338.8	1.098%	Rise	
50	14060.00	14300.00	240.000	338.8	338.8	0.000%	Level	
51	14300.00	14580.00	280.000	338.8	339.4	0.214%	Fall	
52	14580.00	14875.00	295.000	339.4	340.4	0.339%	Rise	
53	14875.00	15050.00	175.000	340.4	345.2	2.743%	Rise	
54	15050.00	15270.00	220.000	345.2	345.2	0.000%	Level	
55	15270.00	15532.00	262.000	345.2	342.5	-1.031%	Fall	
56	15532.00	15770.00	238.000	342.5	339.2	-1.387%	Fall	
57	15770.00	16020.00	250.000	339.2	336.3	-1.160%	Fall	
58	16020.00	16289.74	269.742	336.3	336.3	0.000%	Level	
59	16289.74	16500.00	210.258	336.3	332.4	-1.855%	Fall	
60	16500.00	16800.00	300.000	332.4	332.2	-0.067%	Fall	
61	16800.00	16960.00	160.000	332.2	333.3	0.688%	Rise	
62	16960.00	17160.00	200.000	333.3	330.4	-1.450%	Fall	
63	17160.00	17496.76	336.758	330.4	330.4	0.000%	Level	

	Abstract of Gradients (E-W Corridor)								
S. No.	Description	on Nos. Occurrences Length (n		% w. r. t. total Alignment length					
1	Level	20	6054.412	33.33%					
2	>0% to = 1%	16	4519.947	24.88%					
3	> 1% to = 2%	21	5642.983	31.07%					
4	> 2% to = 3%	4	1282.525	7.06%					
5	> 3% to = 4%	2	665	3.66%					
	Total	63	18165	100.00%					

CHAPTER 5

CIVIL ENGINEERING

5.1 GENERAL

- 5.2 CIVIL STRUCTURES
- 5.3 CONSTRUCTION METHODOLOGY
- 5.4 PRE-CAST CONSTRUCTION
- 5.5 STRUCTURAL SYSTEM OF VIADUCT
- 5.6 CONSTRUCTION OF STATIONS
- 5.7 GEO-TECHNICAL INVESTIGATIONS
- 5.8 LAND
- 5.9 UTILITY DIVERSION

TABLES

TABLE-5.1	STRATIGRAPHY OF ROCK TYPES IN NAGPUR REGION
TABLE-5.2	DETAILS OF LABORATORY TESTS ON SOIL/WATER SAMPLES
TABLE-5.3	DETAILS OF LABORATORY TESTS ON ROCK SAMPLES
TABLE-5.4	SUMMARY OF BOREHOLE – N S CORRIDOR
TABLE-5.5	SUMMARY OF BOREHOLE – E W CORRIDOR
TABLE-5.6	RCC PILE DETAILS FOR NORTH – SOUTH CORRIDOR
TABLE-5.7	OPEN FOUNDATION DETAILS FOR NORTH – SOUTH CORRIDOR
TABLE-5.8	RCC PILE DETAILS FOR EAST WEST CORRIDOR
TABLE-5.9	OPEN FOUNDATION DETAILS FOR EAST WEST CORRIDOR
TABLE-5.10	DETAILS OF LAND REQUIRED FOR DEPOT
TABLE-5.10A	DETAILS OF LAND REQUIRED FOR RUNNING SECTION- EW CORRIDOR
TABLE-5.10B	DETAILS OF LAND REQUIRED FOR RUNNING SECTION- NS CORRIDOR
TABLE-5.10C	DETAILS OF LAND REQUIRED FOR STATIONS
TABLE-5.10D	DETAILS OF LAND REQUIRED FOR PARKING
TABLE-5.10E	ABSTRACT OF LAND REQUIREMENT
TABLE-5.11	UTILITY RESPONSIBILITY DEPARTMENTS
TABLE-5.12	LIST OF AFFECTED WATER SUPPLY LINES-NS CORRIDOR
TABLE-5.13	LIST OF AFFECTED WATER SUPPLY LINES-EW CORRIDOR
TABLE-5.14	LIST OF AFFECTED HT LINES-NS CORRIDOR
TABLE-5.15	LIST OF AFFECTED HT POLES ON-NS CORRIDOR
TABLE-5.16	LIST OF AFFECTED HT LINES-EW CORRIDOR
TABLE-5.17	LIST OF AFFECTED HT POLES ON-EW CORRIDOR
FIGURES	
FIG.5.1	GENERAL ARRANGEMENT OF STANDARD SPAN
FIG.5.2	TYPICAL SECTION OF VIADUCT WITH U GIRDER
FIG.5.3	TYPICAL SECTION OF VIADUCT WITH DOUBLE U GIRDER
FIG.5.4-5.7	LAUNCHING SCHEME OF PRE CAST SEGMENTAL CONSTRUCTION OF

FIG.5.9	DIMENSION OF TUNNEL SECTION
FIG.5.10-5.11	TOP DOWN METHOD- CUT AND COVER CONSTRUCTION
FIG.5.12	BORED TUNNEL AND UG STATION-CROSS PASSAGE WITH SUMP
FIG.5.13	NORMAL SYSTEM FOR U GIRDER WITH CENTRE OHE
FIG.5.14	THIRD RAIL SYSTEM FOR U GIRDER

Chapter - 5

CIVIL ENGINEERING

5.1 GENERAL

This chapter deals with civil underground and elevated structure, Geotechnical investigation, construction methods, land requirements, Utility services and Traffic diversion during construction etc.

5.2 CIVIL STRUCTURES

5.2.1 Underground Section

Presently, there is no "Underground Section" and as such this para is not required. But, there may be some underground section at a later stage. Keeping in view of the same, this has been included.

Tunnel excavation for underground section is generally carried out by Tunnel Boring Machines. Tunnel boring machines (TBMs) capable of drilling in soft and hard rocks can be successfully employed for boring tunnels through the rocky stratum.

5.2.2 Underground Stations

The underground station has been proposed as cut and cover with top-down method. The diaphragm walls for such station constructions would be 80 to 100 cm. thick and will function as a permanent side wall of the station. It is, therefore, necessary to construct the diaphragm walls absolutely watertight and with the required concrete strength. By resorting to top-down method the surface could be restored quickly and further excavations and construction of the station will not hamper the surface activity.

5.2.3 Cut and Cover Method of Construction of Underground Station

Cut and Cover mainly consists of following steps:

- 1. Diversion of utilities
- 2. Construction of support walls
- 3. Excavation between the support walls along with the installation of struts between the two walls to keep them in position.
- 4. Construction of tunnel/structure and removal of temporary struts.

5. Back filling and restoration of the surface

5.2.4 Utility Diversion:

It is suggested that all utilities falling within excavation area are diverted away in advance to avoid damage to such utilities during the excavation/ construction phase. The cross utilities, however has to be kept supported. It is suggested that pressure water pipelines crossing the proposed cut area are provided with valves on both sides of the cut so that the cut area can be isolated in case of any leakage to the pipeline to avoid flooding of the cut/damage to the works.

5.2.5 Support Walls:

Most commonly used support wall is RCC Diaphragm Wall. The advantage of diaphragm wall is that the same can be used as part of permanent structure. The modern techniques are now available where water-stop can be inserted at the joints of two diaphragm wall panels to avoid seepage through the joints. It is also now possible to ensure the verticality of the diaphragm wall panels to avoid any infringement problem later on. Typically the diaphragm wall of 80 cm to 1 meter thickness is sufficient to do the cut and cover construction. The various advantages of diaphragm wall are as follows.

- (a) It is rigid type of support system and therefore ensures the maximum safety against settlement to the adjacent structures.
- (b) Can be used as part of the permanent structure and, therefore, considered economical.
- (c) With diaphragm wall it is possible to construct an underground structure by top down method. In this method top slab is cast once the excavation is reached to the top slab level with rigid connections to the diaphragm wall which can be achieved by leaving couplers in the diaphragm wall reinforcement at appropriate level. This top slab then acts as strut between the two support walls and gives much more rigidity and safety to the construction. Excavation thereafter can be completed. This also helps in restoration of the surface faster without waiting for full structure to be completed.

The other support walls which can be used depending on the site conditions are as follows:

(a) <u>Sheet Piles</u> : 'Z'/ 'U' sheet piles cane be used as temporary support wall. This can be advantageous where it is possible to re-use the sheet pile again and again and therefore, economy can be achieved However the main concern remains, driving of sheet piles causes vibrations/noise to the adjacent buildings. This may sometimes lead to damage to the building and most of the time causes inconvenience to the

3/56

occupants of the building. Situation becomes more critical if sensitive buildings are adjacent to the alignment like hospitals, schools, laboratories, etc. Silent pile driving equipments however are now available and can be used where such problems are anticipated.

- (b) <u>Retaining Casing Piles:</u> This is suitable for situation where the cut and cover is to be done in partly soil and partly rock. The top soil retaining structure can be done with the help of Casing pile which is then grouted with cement slurry. This is considered suitable in case of shallow level, non-uniform, uneven nature of rock head surface which render the construction of sheet piles/diaphragm wall impracticable. These are suitable up to 7-meter depth. The common diameter used for such casing pile is 2.00-2.50 m dia.
- (c) <u>Soldier Piles and Lagging</u>: Steel piles (H Section or I section) are driven into the ground at suitable interval (normally 1-1.5 m) centre-to-centre depending on the section and depth of excavation. The gap between two piles is covered with suitable lagging of timber planks/shot-creting /steel sheets/GI sheets during the process of excavation.
- (d) <u>Secant Piles</u>: are cast-in-situ bored piles constructed contiguously to each other so that it forms a rigid continuous wall. This is considered an alternative to diaphragm wall where due to soil conditions it is not advisable to construct diaphragm wall from the consideration of settlement during the trenching operation. 800 to 1000 mm dia piles are commonly used. Two alternate soft piles are driven and cast in such a way that the new pile partly cuts into earlier constructed piles. This new pile is constructed with suitable reinforcement. With this, alternate soft and hard pile is constructed. This has got all the advantages of diaphragm wall. However, this wall cannot be used as part of permanent structure and permanent structure has to be constructed in-side of this temporary wall.

5.2.6 Anchors:

As an alternative to the struts, soil/rock anchors can be used to keep these support walls in position. This gives additional advantage as clear space is available between two support walls and progress of excavation & construction is much faster as compared to the case where large number of struts is provided which create hindrance to the movement of equipments and material & thus affects the progress adversely.

The combination of all the type of retaining walls, struts/anchors may be necessary for the project to suit the particular site. Based on the above broad principle, the support walls system for cut and cover shall be chosen for particular locations.

5.2.7 Elevated Section - Choice of Superstructure

The choice of superstructure has to be made keeping in view the ease of constructability and the maximum standardization of the formwork for a wide span ranges.

The segmental construction has been chosen mainly due to the following advantages:

- Segmental construction is an efficient and economical method for a large range of span lengths and types of structures. Structures with sharp curves and variable super elevation can be easily accommodated.
- Segmental construction permits a reduction of construction time as segments may be manufactured while substructure work proceeds and assembled rapidly thereafter.
- Segmental construction protects the environment as only space required for foundation and sub-station is required at site. The superstructure is manufactured at a place away from busy areas and placement of superstructure is done with the system erected from piers at heights.
- Segments are easy to stack in the casting yard/stacking yard in more than one layer, thereby saving in requirement of space.
- It is easier to transport smaller segments by road trailers on city roads.
- It is easy to incorporate last minute changes in span configuration if the site situation so warrants.
- Interference to the traffic during construction is significantly reduced.
- Segmental construction contributes towards aesthetically pleasing structures and good finishes.
- The overall labour requirement is less than that for conventional methods.
- Better quality control is possible in the casting yard.
- During construction, the technique shows an exceptionally high record of safety.

5.2.8 Types of Superstructures for Elevated Section

- (A) Pre-cast segmental box girder using external unbounded tendon
- (B) Pre-cast segmental U-Channel Superstructure with internal pre-stressing.

Comparative advantages/disadvantages of the above two types are given below:

A. Precast Segmental Box Girder using External Unbounded Tendon.

This essentially consists of precast segmental construction with external prestressing and dry joints and is by far most preferred technique in fast track projects. In such construction the pre-stressing is placed outside the structural concrete (inside the box section) and protected with high density polyethylene tubes, which are grouted with special wax or cement. The match cast joints at the interface of two segments are provided with shear keys as in traditional segmental construction. However, epoxy is dispensed with because water tight seal at the segment joints is not required because tendons are laid externally & protected by special wax or cement.

The main advantages of dry-jointed externally pre-stressed precast segmental construction can be summarized as follows:-

- Simplification of all post-tensioning operations, especially installation of tendons.
- Reduction in structural concrete thickness as no space is occupied by the tendons inside the concrete.
- Good corrosion protection due to tendons in polyethylene ducts, the grout inspection is easier and leaks, if any, can be identified during the grouting process.
- Simplified segment casting. There is no concern about alignment of tendons. Increased speed of construction.
- The elimination of the epoxy from the match-cast joints reduces costs and increases speed of construction further.
- Replacement of tendons in case of distress is possible and can be done in a safe and convenient manner.
- Facility for inspection and monitoring of tendons during the entire service life of the structure.

Precast Segmental Box Girder using internal tendon is also use.

B. Precast Segmental U-Channel Superstructure with Internal Pre-stressing.

The single U type of viaduct structure is also a precast segmental construction with internal pre-stressing and requires gluing and temporary pre-stressing of segments. The match cast joints at the interface of two segments are also provided with shear keys. The main advantages for this type of structural configuration of superstructure are:

- 1. Built in sound barrier.
- 2. Built in cable support and system function.

- 3. Possibility to lower the longitudinal profile by approximately 1m compared to conventional design.
- 4. Built in structural elements capable to maintain the trains on the bridge in case of derailment (a standard barrier design allow this)
- 5. Built in maintenance and evacuation path on either side of the track.

5.3 CONSTRUCTION METHODOLOGY

For the elevated sections it is recommended to have pre-cast segmental construction for super structure for the viaduct. For stations also the superstructure is generally of pre-cast members. The pre-cast construction will have following advantages:-

- Reduction in construction period due to concurrent working for substructure and superstructure.
- For segmental, pre-cast element (of generally 3.0m length), transportation from construction depot to site is easy and economical.
- Minimum inconvenience is caused to the public utilizing the road as the superstructure launching is carried out through launching girder requiring narrow width of the road.
- As the pre-cast elements are cast on production line in a construction depot, very good quality can be ensured.
- The method is environment friendly as no concreting work is carried at site for the superstructure.

5.4 PRE-CAST CONSTRUCTION

5.4.1 Casting of Segments

For viaducts segmental pre-cast construction requires a casting yard. The construction depot will have facilities for casting beds, curing and stacking area, batching plant with storage facilities for aggregates and cement, site testing laboratories, reinforcement steel yard and fabrication yard etc. An area of about 2.5 Ha. To 3.0 Ha. is required for each construction depot.

For casting of segments both long line and short line method can be adopted. However the long line method is more suitable for spans curved in plan while short line method is good for straight spans. A high degree of accuracy is required for setting out the curves on long line method for which pre calculation of offsets is necessary. Match casting of segments is required in either method. The cast segments are cured on the bed as well as in stacking yard. Ends of the segments are to be made rough through sand blasting so that gluing of segments can be effective. The cast segment will be transported on trailers and launched in position through launching girders.

5.4.2 Launching Scheme

Launching girder is specially designed for launching of segments. The suggested launching scheme is designed in such a way that initially the launching girder is erected on pier head at one end of the work. The segments are lifted in sequence and when the lifting is over, they are dry matched while hanging from the launching girder. After dry matching, the

Segments are glued with epoxy and pre-stressed from one end. The girder is lowered on the temporary / permanent bearings after pre-stressing. The launching girder then moves over the launched span to next span and the sequences continue.

5.5 STRUCTURAL SYSTEM OF VIADUCT

5.5.1 Superstructure

The superstructure of a large part of the viaduct comprises of simply supported spans. However at major crossing/over or along existing bridge, special steel or continuous unit will be provided.

Normally the U-Channel girder having a soffit width of 9.0 m (approx) accommodates the two tracks situated at 3.7m (Tangent & upto 150m curvature) to 4.0m (90m curvature) c/c. The U-Channel superstructure for almost all the simply supported standard spans will be constructed by pre-cast pre-stressed segmental construction with epoxy bonded joints.

The max spans c/c of piers of standard simply supported spans constructed by pre-cast segmental construction technique has been proposed as 28.0m. The usual segments shall be 3.0m in length except the Diaphragm segments, which shall be 2.0m each. The other standard spans (c/c of pier) comprises of 25.0m, 31.0m, 22.0m, 19.0m & 16.0m, which shall be made by removing/adding usual segments of 3.0m each from the center of the span. Depth of the superstructure is so chosen that top of flange of U-Channel will be used as a evacuation walkway in an emergency.

The dimensions of end diaphragm will be finalized based on simply supported span of 31.0m and the same will be also kept for all simply supported standard span. The top level of both the end diaphragms of adjoining spans on the same piers is kept same so that expansion joint can be installed at top and continuity of profile of end diaphragm on the same pier can be maintained. The arrangement has been selected from aesthetic considerations.

The economical span (i.e. with optimum pre-stressing ratio) will be designed for the 25m situation.

Standard span up to 28.0m will be provided throughout the viaduct as far as possible. At crossings, where spans requires to be increased up to 31.0m, simply supported spans will be provided.

The location where the open foundations are possible, the spans of 16m will be provided.

For major crossing having spans greater than 31.0m, special units normally of 3 –span construction or steel girders have been envisaged.

All these continuous units (in case provided at obligatory location) will be constructed by cast-in-situ balanced cantilever construction technique. The top profile of superstructure of continuous unit (for the full length) will be retained the same as for standard spans so that evacuation walkway will be available even in continuous units. The increase in depth of U-channel will be accomplished by thickening the soffit slab (towards downside). At the end of continuous unit, the profile and thickness of soffit slab will be done to the extent that it will match with the profile and depth of end diaphragm of adjoining simply supported spans. The thickness of soffit slab will be increased smoothly toward penultimate support. In order to reduce the dead weight of the girder, voids will be also provided in the thickened soffit slab at bottom. These will be circular near the end of continuous unit and oblong near the penultimate support.

5.5.2 Substructure

The viaduct superstructure will be supported on single cast-in-place RC pier. The shape of the pier follows the flow of forces. For the standard spans, the pier gradually widens at the top to support the bearing under the box webs. At this preliminary design stage, the size of pier is found to be limited to 1.8m to 2.0 m diameter of circular shape for most of its height so that it occupies the minimum space at ground level where the alignment often follows the central verge of existing roads.

To prevent the direct collision of vehicle to pier, a Jersey Shaped crash barrier of 1.0 m height above existing road level has been provided all around the pier. A gap of 25 mm has also been provided in between the crash barrier and outer face of pier. The shape of upper part of pier has been so dimensioned that a required clearance of 5.5 m is always available on road side beyond vertical plane drawn on outer face of crash barrier. In such a situation, the minimum height of rail above the existing road is 8.4 m.

The longitudinal center to center spacing of elastomeric/pot bearing over a pier would be about 1.8 m. The space between the elastomeric bearings will be utilized for placing the lifting jack required for the replacement of elastomeric bearing. An outward slope of 1:200 will be provided at pier top for the drainage due to spilling of rainwater, if any. The transverse spacing between bearings would be 3.2 m (to be studied in more details). The orientation and dimensions of the piers for the continuous units or steel girder (simply supported span) have to be carefully selected to ensure minimum occupation at

ground level traffic. Since the vertical and horizontal loads will vary from pier to pier, this will be catered to by selecting the appropriate structural dimensions.

5.5.3 Foundation Recommendation

Depending on the nature of soil, type of proposed structure and expected loads on foundations, the recommended type of foundation is generally pile foundation except for a few locations where hard strata was located close to ground level. Pile capacities have been calculated as per IS 2911 Part 2 and IRC 78 while allowable bearing capacity for shallow open footing has been computed from the equation as per IS: 6403 – 1981.

• PILE FOUNDATION

Pile foundation is a fissible foundation scheme that may be designed where the loadings are heavy/medium, upper strata are loose/soft or filled up, and depth of water table is less. The pile load bearing capacity is calculated in as per IS 2911 Part 2 & IRC: 78-2000.

• OPEN FOUNDATION

For the prevailing soil conditions and type of structures, it was observed that shallow open footings can be provided at certain locations. Allowable bearing capacity for shallow open footing has been computed from the equation as per IS: 6403 – 1981 & Settlement shall be determined for unit pressure for a specified width of footing based on Corrected SPT values between the level of base of footing and the depth equal to 1.5 to 2.0 times the width of footing. Corrections shall be applied as applicable. Refer; IS: 8009 (Part-1).

5.5.4 Deck – Simple Spans

5.5.4.1 Deck – Simple Spans 'U' Girder

Salient features of the precast segmental construction method technique as envisaged for the project under consideration are indicated below:

Salient features of the pre-cast segmental construction method technique as envisaged for the project under consideration are indicated below:

The superstructure shall be constructed "span by span" sequentially, starting at one end of a continuous stretch and finishing at the other end. Nos. of launching girders may be required so as to work on different stretches simultaneously to enable completion of the project in time.

The number of "breaks" in the stretch can be identified by nos of continuous units.

The suggested method of erection will be detailed in drawings to be prepared. The launching girder (or, more accurately, the "assembly truss") is capable of supporting the

entire dead load of one span and transferring it to the temporary brackets attached to the pier. The governing weight of the segments will be of the order of 55t (to be finalized). The launching girder envisaged will be slightly greater than two span lengths. It must be able to negotiate curves in conjunction with temporary brackets.

Transportation of segments from casting yard to the point of erection will be effected by appropriately designed low-bedded trailors (tyre-mounted). The segments can be lifted and erected using erection portal gantry moving on launching girder.

U-girder segments shall be match cast at the casting yard before being transported to location and erected in position. Post-tensioned cables shall be threaded in-situ and tensioned from one end. It is emphasized that for pre-cast segmental construction only one-end pre-stressing shall be used.

The pre-stressing steel and pre-stressing system steel accessories shall be subjected to an acceptance test prior to their actual use on the works. The tests for the system shall be as per FIP Recommendations as stipulated in the special specifications. Only multistrand jacks shall be used for tensioning of cables. Direct and indirect force measurement device (e.g. Pressure Gauge) shall be attached in consultation with system manufacturer.

The Contractor shall be responsible for the proper handling, lifting, storing, transporting and erection of all segments so that they may be placed in the structure without damage. Segments shall be maintained in an upright position at all times and shall be stored, lifted and/or moved in a manner to prevent torsion and other undue stress. Members shall be lifted, hoisted or stored with lifting devices approved on the shop drawings

5.5.4.2 Deck – Simple Spans Box Girder

The superstructure shall be constructed "span by span" sequentially, starting at one end of a continuous stretch and finishing at the other end. Nos. of launching girders may be required so as to work on different stretches simultaneously to enable completion of the project in time.

The number of "breaks" in the stretch can be identified by Nos. of continuous units & stations.

The suggested method of erection will be detailed in drawings to be prepared, at the time of detailed design. The launching girder (or, more accurately, the "assembly truss") is capable of supporting the entire dead load of one span and transferring it to the temporary brackets attached to the pier. The governing weight of the segments will be of the order of 50t (to be finalized). The launching girder envisaged will be slightly longer than two span lengths. It must be able to negotiate curves in conjunction with temporary brackets.

Transportation of segments from casting yard to the point of erection will be effected by appropriately designed low-bedded trailers (tyre-mounted). The segments can be lifted and erected using erection portal gantry moving on launching girder.

Box girder segments shall be match cast at the casting yard before being transported to location and erected in position. Post-tensioned cables shall be threaded in-situ and tensioned from one end. It is emphasized that for precast segmental construction only one-end pre-stressing shall be used.

The pre-stressing steel and pre-stressing system steel accessories shall be subjected to an acceptance test prior to their actual use on the works. The tests for the system shall be as per FIP Recommendations as stipulated in the special specifications. Only multistrand jacks shall be used for tensioning of cables. Direct and indirect force measurement device (e.g. Pressure Gauge) shall be attached in consultation with system manufacturer.

The Contractor shall be responsible for the proper handling, lifting, storing, transporting and erection of all segments so that they may be placed in the structure without damage. Segments shall be maintained in an upright position at all times and shall be stored, lifted and/or moved in a manner to prevent torsion and other undue stress. Members shall be lifted, hoisted or stored with lifting devices approved on the shop drawings.

5.5.5 Epoxy Bonded Joints and Shear Keys

A minimum compressive stress of 3 kg/sq cm shall be provided uniformly over the crosssection for the closure stress on the epoxied joint until the epoxy has set. The curing period for application of the compressive stress, method of mixing and application of epoxy and all related aspects including surface preparation shall be as per approved manufacturer's specifications.

The purpose of the epoxy joint, which is about 1mm on each mating surface, shall be to serve as lubricant during segment positioning, to provide

Waterproofing of the joints for durability in service conditions and to provide a seal to avoid cross-over of grout during grouting of one cable into other ducts.

The epoxy shall be special purpose and meet requirements of relevant provision of FIP (International Federation of Pre-stressed Concrete)

The temporary compressive stress during the curing period shall be applied by approved external temporary bar pre-stressing (such as Macalloy or Diwidag bar systems or approved equivalent).

5.6 CONSTRUCTION OF STATIONS

It is proposed to construct the elevated stations with elevated concourse over the road at most of the locations to minimize land acquisition. To keep the rail level low, it is proposed not to take viaduct through the stations. Thus a separate structural configuration is required (although this may necessitate the break in the launching operations at each station location)

Sub-structure for the station portion will also be similar to that of viaduct and will be carried out in the same manner. However, there will be single viaduct column in the station area, which will be located on the median and supporting the concourse girders by a cantilever arm so as to eliminate the columns on right of way.

5.6.1 Grade of Concrete

It is proposed to carry out construction work with design mix concrete through computerized automatic Batching Plants with following grade of concrete for various members as per design requirement/durability considerations.

i)	Piles	-	M -35
ii)	Pile cap and open foundation	-	M -35
iii)	Piers	-	M -40
iv)	All precast element for viaduct and station	-	M -45
V)	Cantilever piers and portals	-	M -45
		-	M -60
vi)	Other miscellaneous structure	-	M -30

For all the main structures, permeability test on concrete sample is recommended to ensure impermeable concrete.

5.6.2 Reinforcement and pre-stressed Steel

It is proposed to use HYSD 500 or TMT steel as reinforcement bars. For pre-stressing work, low relaxation high tensile steel strands with the configuration 12 K 15 and or 19 K 15 is recommended (confirming to IS:14268).

5.6.3 Road width required during construction

As most of the construction is to be carried out on the middle of the road, central two lanes including median will be required for construction activities. During piling and open foundation work, a width of about 9 m will be required for construction and the same will be barricaded. It is proposed that two lanes are provided for traffic on either side during construction by widening of roads, if necessary. In certain cases, one way traffic may be resorted to.

All these actions will require a minimum period of about 4 to 6 months. During this period, the implementing agency can go ahead with the following preliminary works:

i) Preliminary action for diversion of utility and preparation of estimates thereof.

ii) Reservation of land along the corridor, identification and survey for acquisition.

The new SPV for the implementation of Nagpur metro rail project has to take action for appointment of consultant for Project Management and proof checking including preparation of tender documents. Simultaneously, action is also to be taken for detailed design for structures for elevated corridor

5.7 GEO-TECHNICAL INVESTIGATIONS

The geological investigation was carried out by DMRC aiming to understand the geology of areas along with their alignment. The purpose of doing the geotechnical investigation is to identify the soil type with a view of design the safe & economical foundations for their structures and to propose the ground improvement methods to known troublesome spots like swampy areas, soft ground and peat land etc, if found any.

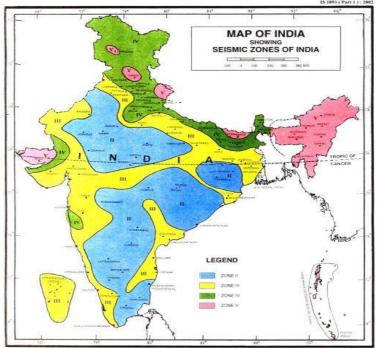
Prior to construction, it is necessary to estimate the geological phenomena, based on interpretation of geological information such as boring log, physical and mechanical property. Accordingly, quality and quantity of geological investigation highly affect to civil engineering work

5.7.1 Physiography

Nagpur is situated at 21° 06' N latitude and 79° 03' E longitude and a mean altitude of 310 meters above sea level. Being located far away from any major water body at the centre of the Indian peninsula, the Nagpur's climate is dry or mildly humid for most of the year except for the rainy season. The highest recorded temperature in the city was 48.6 °C, while the lowest was 3°C.

5.7.2 General Geology and Related Characteristics

The Geo technical site investigation carried out from AUTOMOTIVE SQUARE TO MIHANalignment & 39 boreholes were driven in Lokmanya Nagar to Prajapati Nagar alignment with in the Nagpur City of Maharashtra.


Nagpur lies on the Deccan plateau of the Indian Peninsula and has a mean altitude of 310.5 meters above sea level. The underlying rock strata are covered with alluvial deposits resulting from the flood plain of the Kanhan River. In some places these give rise to granular sandy soil. In low lying areas which are poorly drained, the soil is alluvial clay with poor permeability characteristics. In the eastern part of city crystalline <u>metamorphic rocks</u> such as gneiss, schist and granites are found, while in the northern part yellowish sand stones and clays of the lower <u>Gondwana</u> formations are found.

Latitude 78015' to 80045'E, Longitude 18045' to 21'35'N

Physiography and Climate: The city is generally having warm tropical climate with the temperature in summer varying between 41°C to 48°C and in winter between 32°C to 37°C. The period between January to April and Nov to December is generally dry whereas in June to October it is rainy season. The city has an average annual rainfall of 1112.0 mm.

SEISMICITY : According to studies, Nagpur region lies in between Zone 1 and Zone 2 of Earthquake Zones in the country. It means that Nagpur has close to zero chances of getting a major earthquake which may cause huge devastation. Recent history also supports the fact that Nagpur region is relatively very safe as far as earthquakes are concerned. Though city has not recorded any seismic activity of magnitude above 4 on Richter scale since 1938 and falls under safest earthquake zone area, the possibilities of a low to moderate earthquake cannot be ruled out completely. A study of active faults conducted by the Geological Survey of India (GSI), central region in city in last ten years, has shown presence of predominant features of neo-tectonic activity in vicinity (200 plus km) of Nagpur which could reactivate and trigger low to moderate quakes in the area. Active faults studies conducted by GSI department from 2002 to March 2012 has shown that the entire stretch starting from Shadol district in Madhya Pradesh in the Son river basin to Narmada banks in Jabalpur, the Son Narmada South Fault (SNSF) which continues westward to become Gwaligarh fault (north of Paratwada in Maharashtra) has shown presence of proterozoic metamorphic rocks along the banks of the rivers which are known for tectonic activity

NOTE . Towns falling at the boundary of zones demarcation line between two zones shall be considered in High Zone.

GEOGRAPHY: The Nagpur region has complex topography of hilly terrain, undulating terrain & plains. Nearly 40% area is occupied by forests having hilly terrains. The Wardha, Wainganga, Painganga, Pranhita, Indravati rivers are forming major basins in the area. The drainage pattern is dendritic to sub parallel.

GEOLOGY: The geology of the Nagpur region is famous for the metamorphic rocks, which occur in all the districts in the Nagpur region except Wardha and some part of Nagpur district. The other geological formation Deccan Traps occur in the Wardha and North and North-West part of Nagpur District. The stratigraphic succession of the geologic formations in the region is given below.

Stratigraphy of the rock types occurring in the Nagpur Region

Age	Rock Type	Geology	Geographical distribution in Nagpur Region.			
Lower Eocene to	Igneous Rocks	Deccan Trap, Volcanic lava flows with inter trappean beds.	Wardha and Some parts of Nagpur district & Chandrapur.			
Upper cretaceous	0	Lamatas and Bagh Beds	Parts of Nagpur.			
Jurrassic upper Gondwana	Metamorphic	Chikiala & Kota stages. Lime stone	Sironcha taluka of Gadchiroli district.			
Triassic	Sedimentary Rocks	Pachmari & Maler's stages – Clays, Sandstones.	Sironcha taluka of Gadchiroli district.			
		Mangli Beds – Sandstone	Warora Taluka of Chandrapur district.			
Permian Lower Gondwana	Sedimentary Rocks	Kamptee series – Sandstone, Shale, Coal	Nagpur & Chandrapur district.			
		Barakar Series – Sandstone, Shales and Coal.	Nagpur & Chandrapur district.			
Upper Carboniferrous	Metamorphic Rocks	Talchir series – Boulders, Green shale, Sand stones, Shales, Clays)	Nagpur & Chandrapur district.			
Proterozoic	Sedimentary	Vindhyan super group (Lime stones, Shales & Sandstones)	Chandrapur district.			
FIOLEIOZOIC	Rocks	Cuddapah equivalent Limestones & shales	Sironcha Taluka of Gadchiroli district.			
Precambrian	Metamorphic Rocks	Sakoli Series Quartzites schists,Phyllites, Iron ore series Quartzites schists,Phyllites,	Gadchiroli, Chandrapur, Nagpur & Bhandara districts.			
		Sausar Series Marbles gneisses,schists granite	Nagpur & Bhandara districts.			
		Penisular Basement complex (Archeans) Gneisses, schists,Granites	Gadchiroli, Chandrapur, Nagpur and Bhandara Districts			

Table 5.1: ROCK TYPES

5.7.3 FIELD INVESTIGATION

Field Investigation at the site were planned to determine the required strength characteristics of the underlying soil/rock strata to design the foundations of the proposed structure to be constructed. The geotechnical investigation work includes:

 Drilling of 150mm diameter boreholes in all kind of soil including gravels and cobbles and Nx size borehole in boulders and rock strata. All boreholes shall be extend upto depths of 30 m in soil (up to N>=100) or 10 m in weathered rock (RQD <=50%) or 5 m in hard rock (RQD>50%).

However the maximum depth of bore hole does not exceed 30 m. If strata having a standard Penetration Test value greater than 100 with characteristics of rock are met earlier, the borehole shall not be advanced further. When the boreholes are to be terminated in soil strata, the Standard Penetration Test shall be carried out at the termination depth and recorded.

- 2. Conducting Standard penetration test (SPT) at every 1.5m interval starting from 1.5m from natural ground level or every change of stratum as per IS:2131.
- 3. Collection of disturbed, undisturbed soil samples and water sample as per IS: 2132, IS: 1892 & IS: 3025 should be followed.
- 4. The following laboratory tests were conducted on collected soil/water samples.

SL. NO.	PARTICULARS OF PROPERTIES	DISTURBED SOIL SAMPLE	UNDISTURBED SOIL SAMPLES
1.	Sieve Analysis		
2.	Hydrometer Analysis	\checkmark	
3.	Natural Moisture Content		
4.	Bulk / Dry Density		
5.	Specific Gravity	\checkmark	
6.	Atterberg's Limit	\checkmark	
7.	Direct Shear Test (for non cohesive soils)		
8.	UU Tests (for cohesive samples)		\checkmark
9.	UCS Tests (for cohesive samples)		
10.	Field permeability test in soil		
11.	Chemical test on soil & water sample for pH value, carbonate, sulphate (SO ₃ and So ₄)		

Table 5.2 : LABORATORY TESTS-SOIL/WATER

5. The following laboratory tests were conducted on collected rock sample

SL. NO.	PARTICULARS OF PROPERTIES
1.	Permeability test by Packer method
2.	Density Test
3.	Water absorption
4.	Porosity
5.	Hardness
6.	Atterberg's Limit
7.	Unconfined compression test
8.	Point load index
9.	Modulus of elasticity
10.	Abrasion Testing

Table 5.3 : LABORATORY TESTS/ROCK SAMPLES

5.7.4 DETAILS OF GEOTECHNICAL INVESTIGATION

5.7.4.1 GENERAL

Six boring rigs were deployed with all requisite equipments and accessories at project sites. Total 80 boreholes have been drilled at an average distance of 0.5 km each, all along the length of the proposed Metro corridor.

41 bore holes were driven in AUTOMOTIVE SQUARE TO MIHANalignment & 39 boreholes were driven in Lokmanya Nagar to Prajapati Nagar alignment. However, due to the site condition, depth of drilling work ranging from 10.50m to 25m was carried out at the proposed locations. Details of Boreholes are given below in Table no 5.4 & Table no 5.5

5.7.4.2 DETAILS FOR NORTH – SOUTH CORRIDOR

Necessary plant, equipment and personnel for conducting the requisite field work were mobilized to the site. These were shifted from one test location to another location during execution of the field work and demobilized on satisfactory completion of the entire field work. Forty one bore holes (BH-1 to BH-41) carried out.

The bore holes were bored at the site using Rotary drilling method as per IS: 1892-1979. Casing as required was used to retain the bore holes.

Standard penetration tests were conducted in the above bore holes at every 1.50 m interval & at change of strata as per specifications. The bores were cleaned up to the desired depths. Standard split spoon sampler attached to lower end of 'A' drill rods was driven in the bore holes by means of standard hammer of 63.50 Kg falling freely from a height of 75 cm. The sampler was driven 45 cm as per specifications & the numbers of blows required for each 15 cm penetration were recorded. The numbers of blows for the first 15 cm penetration were not taken into account. This was considered as seating drive. The numbers of blows for next 30 cm penetration were designated as SPT 'N' value. Wherever the total penetration was less than 45 cm, the number of blows & the depth penetrated is incorporated in respective bore logs. Disturbed soil samples obtained from standard split spoon sampler for all the above standard penetration tests were collected in polythene bags of suitable size. These samples were properly sealed, labelled, recorded and carefully transported to the laboratory for testing.

Undisturbed soil samples were collected from the bore holes at every 3.0 m interval in depth & at change of strata as per sampling specifications, in thin walled sampling tubes of 100 mm dia and 450 mm length fitted to an adopter with ball and socket arrangement. These sampling tubes after retrieval from the bore holes were properly waxed and sealed at both ends. These were carefully labeled and transported to the laboratory for testing. Undisturbed soil samples wherever slipped during lifting, were duly marked in the field bore logs as well as in the soil profile.

Disturbed soil samples were also collected from the bore holes at suitable depths/intervals to supplement the boring records. These samples were collected in polythene bags of suitable size. These samples were properly sealed, labeled, recorded & carefully transported to the laboratory for testing.

Conducting field permeability test in same bore holes in overburden using falling head and in rock with packer.

The depth of ground water table was checked / measured in all bore holes. The ground water table was encountered in some bore holes during the boring activity

Summary of Bore Holes for this corridor is as below :

BH No.	Location Details	Total depth	Soil	Soft Rock	Hard Rock	Water Table (m)
1	Automative Chowk	25.00	15.00	10.00	-	7.20
2	Go Gas Pump	16.50	6.50	10.00	-	7.10
3	kailly Automobiles	17.00	7.00	10.00	-	7.20
4	Lal godown chowk	15.50	5.50	10.00	-	6.00
5	New Indira Hindi School	16.00	6.00	10.00	-	6.90
6	Oppt. Jaswant Tuli Mall,	16.00	6.00	10.00	-	7.10
7	Bharat Petrol Pump (10 No. Pulia)	14.50	4.50	10.00	-	5.40
8	Kadwii Chowk,	14.50	4.50	10.00	-	5.15
9	Gurudwara (Railway Line Near)	20.00	10.00	10.00	-	5.00
10	Gaddi Godown Chowk	12.00	2.00	10.00	-	4.25
11	L.I.C Chowk, AHM Church Campus	11.50	1.50	10.00	-	4.40
12	R.B.I Bank Chowk	12.00	2.00	10.00	-	4.00
13	Morrises Collage, T. Point	11.00	1.00	10.00	-	3.85
14	Sita Burdi Police Station	14.50	4.50	10.00	-	5.00
15	Ras Furniture, Oppt. Nangle Traders	16.00	6.00	10.00	-	4.70
16	Yaswant Stadium	17.00	7.00	10.00	-	4.60
17	Dhantoli P.S, Oppt. Green City Hotel	17.50	7.50	10.00	-	5.10
18	Madhukar Arts (M. Printers)	15.00	5.00	10.00	-	3.20
19	Asha Towers	14.50	4.50	10.00	-	3.90
20	Hardikar Chowk	14.00	4.00	10.00	-	3.40
21	Central Jail	15.00	5.00	10.00	-	3.60
22	Clock Tower Rajive Gandhi Chowk	11.50	1.50	10.00	-	3.25
23	Sanskar Vidhya Sagar School	12.50	2.50	10.00	-	4.00
24	Bharat Creations/Sanjay Traders	13.00	3.00	10.00	-	4.10
25	Sawarkar Chowk	12.50	2.50	10.00	-	2.90
26	Khamla Bus Stop	12.50	2.50	10.00	-	3.60
27	Baba Hardware/Vijay Trading	13.00	3.00	10.00	-	3.00
28	Arun Rao Purnakar Chowk (Puliya)	13.00	3.00	10.00	-	2.10
29	Park/Dence Forest Area (Airport)	14.00	4.00	10.00	-	2.90
30	Parking Airport	14.50	4.50	10.00	-	2.10
31	Airport Boundry	14.50	4.50	10.00	-	3.70
32	Mihan Entry	13.50	3.50	10.00	-	2.65
33	Mihan Road	11.50	1.50	10.00	-	2.50
34	Mihan Road	11.50	1.50	10.00	-	3.70
35	Mihan Road	10.50	0.50	10.00	-	3.20
36	Mihan Road	11.50	1.50	10.00	-	3.15
37	Mihan Road	10.50	0.50	10.00	-	3.20
38	Mihan Road	11.00	1.00	10.00	-	4.05
39	Mihan Road	10.50	0.50	10.00	-	4.00
40	Mihan Depot	11.00	1.00	10.00	-	3.10
41	Mihan Depot	11.00	1.00	10.00	-	2.40

Table 5.4 – SUMMARY OF BORE HOLES N.S.CORRIDOR

5.7.4.3 DETAILS FOR EAST - WEST CORRIDOR

Thirty nine bore holes (BH-1 to BH-39) were carried out. The bore holes were bored at this site using Rotary drilling method as per IS: 1892-1979. Casing as required was used to retain the bore holes.

Standard penetration tests were conducted in the above bore holes at every 1.50 m interval & at change of strata as per specifications. The bores were cleaned up to the desired depths. Standard split spoon sampler attached to lower end of 'A' drill rods was driven in the bore holes by means of standard hammer of 63.50 Kg falling freely from a height of 75 cm. The sampler was driven 45 cm as per specifications & the numbers of blows required for each 15 cm penetration were recorded. The numbers of blows for the first 15 cm penetration were not taken into account. This was considered as seating drive. The numbers of blows for next 30 cm penetration were designated as SPT 'N' value. Wherever the total penetration was less than 45 cm, the number of blows & the depth penetrated is incorporated in respective bore logs. Disturbed soil samples obtained from standard split spoon sampler for all the above standard penetration tests were collected in polythene bags of suitable size. These samples were properly sealed, labelled, recorded and carefully transported to the laboratory for testing.

Undisturbed soil samples were collected from the bore holes at every 3.0 m interval in depth & at change of strata as per sampling specifications, in thin walled sampling tubes of 100 mm dia and 450 mm length fitted to an adopter with ball and socket arrangement. These sampling tubes after retrieval from the bore holes were properly waxed and sealed at both ends. These were carefully labeled and transported to the laboratory for testing. Undisturbed soil samples wherever slipped during lifting, were duly marked in the field bore logs as well as in the soil profile.

Disturbed soil samples were also collected from the bore holes at suitable depths/intervals to supplement the boring records. These samples were collected in polythene bags of suitable size. These samples were properly sealed, labeled, recorded & carefully transported to the laboratory for testing.

Conducting field permeability test in same bore holes in overburden using falling head and in rock with packer.

The depth of ground water table was checked / measured in all bore holes. The ground water table was encountered in some bore holes during the boring activity.

Summary of Bore Holes is given in Table : 5.5

	E W CORRIDOR					
BH No.	Location Details	Total depth	Soil	Soft Rock	Hard Rock	Water Table (m)
1	AIA Engineering Limited.	11.00	1.00	5.00	5.00	3.50
2	C.R.P.F Gate No1	11.00	1.00	6.00	4.00	4.20
3	Mahindra Company	11.50	1.50	6.00	4.00	4.30
4	Ambru Batti Chowk (Near Dharam kantta	11.50	1.50	10.00	-	4.05
5	Toll Tax Naka	11.00	1.00	10.00	-	4.25
6	Super Enclave, Opp. Prashant Trading	11.50	1.50	10.00	-	5.30
7	Hingna T. Point	10.50	0.50	10.00	-	4.70
8	Karankutti Hotel	11.00	1.00	10.00	-	4.60
9	Pump House (G.C.C.R.P.F) Nagpur.	10.50	0.50	10.00	-	5.10
10	Subhash Nagar Chowk,	12.50	2.50	9.00	1.00	4.20
11	Nagpur Improvement Trust, Crazy Castle.	13.00	3.00	10.00	-	4.40
12	Tanveer Hotel	12.50	2.50	10.00	-	3.40
13	Leela house (Near Ambajhari T.Point)	12.00	2.00	8.50	1.50	3.60
14	L.A.D. Chowk	13.00	3.00	10.00	-	5.10
15	Shankar Nagar chowk	13.00	3.00	10.00	-	5.15
16	Adrash S.S High School	12.00	2.00	10.00	-	5.10
17	Dharampeeth Vidhyalay	14.00	4.00	10.00	-	4.90
18	A.M.I.E (Nagpur Local Center)	14.00	4.00	10.00	-	5.50
19	M.J Collage	14.50	4.50	10.00	-	4.90
20	Jhansi Rani Chowk	14.00	4.00	10.00	-	5.10
21	Munje Chowk	14.00	4.00	10.00	-	5.70
22	Railway Push Box.	14.50	4.50	10.00	-	4.60
23	Nagpur Corporation octroi Naka - 13	14.00	4.00	10.00	-	4.20
24	Hazrat baba majar	14.00	4.00	10.00	-	5.30
25	Mayo Hospital	12.00	2.00	10.00	-	3.90
26	Sewa Sadan Chowk	13.00	3.00	10.00	-	4.50
27	Gandhi Bagh (Bus Stop)	12.50	2.50	10.00	-	4.35
28	Chittarawali Chowk	13.20	3.20	10.00	-	4.70
29	Darodkar Chowk	13.15	3.15	10.00	-	4.60
30	Rahate Hospital	14.50	4.50	10.00	-	4.75
31	Telephone Exchange	16.00	6.00	10.00	-	7.20
32	Chapro Nagar Chowk, Bharat Furniture	16.00	6.00	10.00	-	5.30
33	Ambedkar Chowk,	17.50	7.50	10.00	-	4.90
34	Ali Electrical, Vardhman Nagar Chowk	16.50	6.50	10.00	-	7.40
35	Near Mahalaxmi Collaction	18.50	8.50	10.00	-	6.40
36	Sapna Bar & Restorent	17.00	7.00	10.00	-	4.30
37	Radhe Krishan Hospital Chowk	17.50	7.50	10.00	-	7.30
38	Desi Wine Shop	21.00	10.00	10.00	-	7.60
39	Gomti Hotel, Near P & B Bank	25.00	10.00	10.00	-	7.30

Table 5.5 – SUMMARY OF BORE HOLES E W CORRIDOR

5.7.4.4 TYPE OF FOUNDATION :

TYPE OF FOUNDATION :NORTH – SOUTH CORRIDOR

A : Bored Cast in situ RCC Pile

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the most feasible soil-foundation system is recommended as normal bored cast in situ R.C.C. piles foundations of 0.80m & 1.0m diameter at different depths with cut-off level at 1.50m to 2.0m depth below existing Ground level.

The safe load carrying capacities of these piles are given in following table.

Borehole	Dia. of Pile	Cutoff level	Depth, m	Pile Capacity			
Nos				Compressio n	Uplift	Lateral	
1	0.80	1.50	19.00	185.0	90.0	9.0	
	1.00	1.50	19.00	300.0	120.0	12.0	
2, 3	0.80	1.50	11.00	170.0	40.0	9.0	
2, 3	1.00	1.50	11.00	250.0	50.0	12.0	
156	0.80	1.50	10.50	170.0	45.0	9.0	
4,5,6	1.00	1.50	10.50	250.0	50.0	12.0	
7 0	0.80	1.50	10.00	150.0	35.0	9.0	
7,8	1.00	1.50	10.00	225.0	45.0	12.0	
9	0.80	1.50	15.00	220.0	85.0	9.0	
9	1.00	1.50	15.00	320.0	100.0	12.0	
14	0.80	1.50	10.00	150.0	35.0	9.0	
14	1.00	1.50	10.00	225.0	45.0	12.0	
15 16	0.80	1.50	11.00	170.0	40.0	9.0	
15,16	1.00	1.50	11.00	250.0	50.0	12.0	
17	0.80	1.50	12.00	180.0	45.0	9.0	
17	1.00	1.50	12.00	260.0	55.0	12.0	
18 to 21	0.80	1.50	10.00	150.0	35.0	9.0	
101021	1.00	1.50	10.00	225.0	45.0	12.0	
23 to 28	0.80	1.50	10.00	140.0	33.0	9.0	
23 10 28	1.00	1.50	10.00	210.0	40.0	12.0	
29 to 32	0.80	1.50	10.00	150.0	35.0	9.0	
291032	1.00	1.50	10.00	225.0	45.0	12.0	

c load carrying capacities	or these plies are given in following table.
Table :5.6 RCC PILE D	ETAILS FOR NORTH – SOUTH CORRIDOR

Note:

- 1. For design purpose, water table shall be considered at cut off level.
- 2. For design purpose, effective overburden pressure at pile tip should correspond to pile length equal to 15 times the diameter.
- 3. The above values should be confirmed through pile load tests in the field before adopting these values for design purposes.

B: Open square footing

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the types of foundations, depths and net safe bearing capacities recommended for design purposes are given in the following table. The net SBC/API in the following table are the lower of the values obtained from shear failure criterion as per IS: 6403 and settlement failure criterion as per IS: 8009, Part-I.

For Bore Hole Nos : 10 to 13, 22 & 33 to 41 :

Table :5.7 OPEN FOUNDATION DETAILS FOR NORTH – SOUTH CORRIDOR For Permissible settlement = 40.0 mm

Type of Foundation	Depth of Foundation (m)	Size of Foundation (m)	Net Safe Bearing Capacity/ Allowable Pressure Intensity (t/m ²)
Square footing	2.50 to 3.0	5.0 to 6.0	20.00

Note: For design purpose water table shall be considered at foundation level.

TYPE OF FOUNDATION : EAST - WEST CORRIDOR

A : Bored Cast in situ RCC Pile

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the most feasible soil-foundation system is recommended as normal bored cast in situ R.C.C. piles foundations of 0.80m & 1.0m diameter at different depths with cut-off level at 1.50m to 2.0m depth below existing Ground level.

The safe load carrying capacities of these piles are given in following table.

Borehole	Dia. of	Cutoff	Donth m	Pile Capacity			
Nos	Pile	level	Depth, m	Compression	Uplift	Lateral	
11	0.80	1.50	12.00	400.0	60.0	9.0	
11	1.00	1.50	12.00	600.0	90.0	12.0	
17 – 22	0.80	1.50	14.00	155.0	50.0	9.0	
17 - 22	1.00	1.50	14.00	240.0	70.0	12.0	
23 – 24	0.80	1.50	14.00	180.0	60.0	9.0	
23 - 24	1.00	1.50	14.00	250.0	75.0	12.0	
25 – 29	0.80	1.50	12.00	150.0	40.0	9.0	
25 – 29	1.00	1.50	12.00	220.0	50.0	12.0	
30 – 31	0.80	1.50	14.00	170.0	50.0	9.0	
30 - 31	1.00	1.50	14.00	240.0	70.0	12.0	
32	0.80	1.50	12.00	170.0	40.0	9.0	
52	1.00	1.50	12.00	250.0	50.0	12.0	
33 – 34	0.80	1.50	15.00	200.0	80.0	9.0	
33 - 34	1.00	1.50	15.00	300.0	100.0	12.0	
35 – 37	0.80	1.50	15.00	190.0	75.0	9.0	
35 - 37	1.00	1.50	15.00	300.0	100.0	12.0	
38	0.80	1.50	15.00	180.0	80.0	9.0	
30	1.00	1.50	15.00	250.0	100.0	12.0	
39	0.80	1.50	20.00	200.0	80.0	9.0	
39	1.00	1.50	20.00	300.0	100.0	12.0	

Table :5.8 RCC PILE DETAILS FOR EAST - WEST CORRIDOR

Note:

- 1. For design purpose, water table shall be considered at cut off level.
- 2. For design purpose, effective overburden pressure at pile tip should correspond to pile length equal to 15 times the diameter.
- 3. The above values should be confirmed through pile load tests in the field before adopting these values for design purposes.

B : Open square footing

Depending on the field and laboratory observations of subsoil strata, test results and the type of structures proposed at site, the types of foundations, depths and net safe bearing capacities recommended for design purposes are given in the following table. The net SBC/API in the following table are the lower of the values obtained from shear failure criterion as per IS: 6403 and settlement failure criterion as per IS: 8009, Part-I.

		For Permissil	ole settlement =	<u>= 40.0 mm</u>
Type of Foundatio n	B/Hole No	Depth of Foundatio n (m)	Size of Foundation (m)	Net Safe Bearing Capacity/ Allowable Pressure Intensity (t/m ²)
	1 – 9	2.50 - 3.0	5.0 to 6.0	25.00
	10 & 12	3.0	5.0 to 6.0	20.00
Square footing	12 – 13	3.0	5.0 to 6.0	20.00
5	14 – 15	3.00 - 4.00	5.0 to 6.0	25.00
	16	3.0	5.0 to 6.0	20.00

Table :5.9 OPEN FOUNDATION DETAILS FOR EAST-WEST CORRIDOR

Note: For design purpose water table shall be considered at foundation level.

5.8 LAND

5.8.1 The alignment and profile

Both the alignments are elevated except around 4.6 Km at Grade alignment. Total 36 stations are proposed in both corridors, Out of which 02 are at grade and 35 are elevated.

5.8.2 Land Requirement for following Major Components

MRTS Structure (including Route Alignment), Station Building, Platforms, Entry/Exit Structures, Traffic Integration Facilities, Depots, etc. Receiving/Traction Sub-stations Radio Towers Temporary Construction Depots and work sites. Staff quarters, office complex and operation control centre(OCC)

5.8.3 Land for Underground stretches

No land at surface is required permanently for underground section, except for small areas for entry/exit structures, traffic integration, chilling plant and ventilation shafts at stations. These will be located either on footpath edge or in front marginal open setback of the building along the road.

5.8.4 Land required for elevated stretches

For elevated section, single pier supporting the viaduct will be located on the middle of road so that the existing roads remain in use as usual. Accordingly, necessary

permission for using such right-of-way will have to be obtained from the concerned authorities. Elevated station is generally proposed with elevated concourse so that land is required only for locating the entry/exit structures. Traffic integration facilities are provided wherever the same are required and, but no land is proposed for acquisition.

The normal viaduct structure of elevated Metro is about 10 m (edge to edge) wide. Ideally the required right of way is 10m. However, for reasons of safety a clean marginal distance / setback of about 5 m is necessary from either edge of the viaduct (or 10 m on both sides of the centre line) wherein no structures are to be located. This is necessary as the traction system as proposed is overhead 25 kV ac systems with masts fixed on the parapets. Also, it ensures road access and working space all along the viaduct for working of emergency equipments and fire brigade. In stretches, where the elevated alignment has to be located away from road, a strip of 20-m width is proposed for acquisition.

5.8.5 Land for Switch-over Ramps

Switch-over ramps are required for transition from the underground to elevated section or *vice versa*. The ramp covers a stretch at ground for the whole width of structure for two tracks (about 10.5m including the protection works). The length of ramp above ground depends on the existing ground slope and the gradient provided on Metro alignment (normally 3% to 4%). Thus the ramp is to be located in an area where sufficient road width is available or in an open area. On this corridor, three such ramps are provided on the both the corridors.

5.8.6 Land for Traffic integration

Certain land is required for traffic integration at the each station. Efforts have been made to identify land required for traffic integration at each station to facilitate park and ride facility, but it is not possible to find open space at all the locations. Hence land for traffic integration has been marked in the drawing wherever is available.

5.8.7 Land for Traction and Receiving Substation and Radio Towers

Four RSS are proposed to be located for both the corridors. Hence, an area has to be earmarked at Kasturchand Park. The exact location will be decided at the time of implementation of the project. Similarly, four radio towers are also being proposed to be located at four locations occupying an area of 100 m^2 ($10 \text{ m} \times 10 \text{ m}$ each plot) for each radio tower.

5.8.8 Land Requirement for Stations & Running section

The station is generally located on the road median. Total length of the station is ~140m. All the stations are two-level stations. The concourse is planned along the whole length of the platform with staircases leading from either side of the road. The maximum width of the station at concourse is ~22m. Passenger facilities like ticketing, information, etc as well as operational areas are provided at the concourse level. The staircase giving access to concourse area from ground will be located at the edge of footpaths or in front marginal open setback of the buildings in the as far as possible in the open space. Nevertheless it is not possible to find open space at all the locations therefore acquisition of certain private structures is inevitable. At curved portions, the alignment could not be kept in the centre of the road and land acquisition at such locations is inevitable in spite of introduction of sharper curves.

To the extent possible the Entry and Exit points of stations (underground and elevated) were planned on the foot paths. But, for locating other station facilities such as chiller plants, ventilation shafts, underground water tanks, generator set room etc., land acquisition is proposed The details of land permanently required for depot, running sections and stations are indicated in the **Table 5.10**, **Table 5.10 A**, **5.10 C**, **5.10 D** and **Table 5.10E**.

S. No.	Plot No.	Location	Area (approx)	Ownership	Purpose
1.	DP1	KHAPRI	33.90 hectares	Government	Depot
2.	DP2	SRP LAND	25.89 hectares	Government	Depot

Table 5.10: Details of Land Required for Depot

Table 5.10 A: Details of Land Required for Running Section EAST-WEST CORRIDOR

		EATS-WEST CORRIDOR	
6 N 0			
S.NO	PLOT NO	AREA(Sqm)	OWNERSHIP
1	RS-1	82	Govt.
2	RS-2	215.8	Pvt.
3	RS-3	34.7	Govt.
4	RS-4	1930.3	Pvt.
5	RS-5	129.5	Pvt.
6	RS-6	86.8	Pvt.
7	RS-7	25.8	Pvt.
8	RS-8	590.9	Pvt.
9	RS-9	2594.8	Govt.
10	RS-10	543.8	Govt.
11	RS-11	923.9	Pvt.
12	RS-12	550.5	Pvt.

		EATS-WEST CORRIDOR	
S.NO	PLOT NO	AREA(Sqm)	OWNERSHIP
13	RS-13	584.9	Pvt.
14	RS-14	278.4	Pvt.
15	RS-15	40.3	Pvt.
16	RS-16	229.1	Pvt.
17	RS-17	11.6	Pvt.
18	RS-18	22.1	Pvt.
19	RS-19	14.7	Pvt.
20	RS-20	1.8	Pvt.
21	RS-21	4.8	Pvt.
22	RS-22	34.8	Pvt.
23	RS-23	0.9	Pvt.
24	RS-24	3.9	Pvt.
Total Land = 8	3936.1Sqm		
Govt. = 3255.	3 Sqm.		
Pvt. =5680.8S	qm.		

Table 5.10 B: Details of Land Required for Running Section NORTH SOUTH CORRIDOR

RUNNING SECTION (OF NAGPUR METRO RA	IL PROJECT
NORT	H-SOUTH CORRIDOR	
PLOT NO	AREA(Sqm)	OWNERSHIP
RS-1	35.3	Pvt.
RS-2	108.8	Pvt.
RS-3	11.3	Govt.
RS-4	1.9	Pvt.
RS-5	55.1	Pvt.
RS-6	60.9	Pvt.
RS-7	53.1	Govt.
RS-8	198.6	Govt.
RS-9	152.4	Govt.
RS-10	31.5	Pvt.
RS-11	25.3	govt.
RS-12	29.1	govt.
RS-13	105.6	Pvt.
RS-14	3746.4	Pvt.
RS-15	553.1	Govt.
RS-16	67.4	Govt.
RS-17	122.1	Govt.
	RUNNING SECTION (PLOT NO RS-1 RS-2 RS-3 RS-4 RS-5 RS-6 RS-7 RS-8 RS-9 RS-11 RS-12 RS-13 RS-14 RS-15 RS-14 RS-15 RS-16	RUNNING SECTION OF NAGPUR METRO RA NORTH-SOUTH CORRIDOR PLOT NO AREA(Sqm) RS-1 35.3 RS-2 108.8 RS-3 11.3 RS-4 1.9 RS-5 55.1 RS-6 60.9 RS-7 53.1 RS-8 198.6 RS-9 152.4 RS-10 31.5 RS-11 25.3 RS-12 29.1 RS-13 105.6 RS-14 3746.4 RS-15 553.1 RS-16 67.4

10	DC 10	((0.1	
18	RS-18	663.1	Govt.
19	RS-19	108.2	Govt.
20	RS-20	699.1	Govt.
21	RS-21	350.8	Govt.
22	RS-22	6087.7	Pvt.
23	RS-23	873.6	Pvt.
24	RS-24	55	Pvt.
25	RS-25	243.9	Govt.
26	RS-26	4645.6	Govt.
27	RS-27	250.7	Pvt.
28	RS-28	42.6	Pvt.
29	RS-29	715.9	Pvt.
30	RS-30	827.5	Govt.
31	RS-31	1180.7	Pvt.
32	RS-32	1770.5	Pvt.
33	RS-33	1339.1	Pvt.
34	RS-34	736.8	Pvt.
35	RS-35	741	Pvt.
36	RS-36	871.8	Pvt.
37	RS-37	79	Pvt.
38	RS-38	136	Pvt.
39	RS-39	10418.7	Govt.
40	RS-40	26554.9	Govt.
41	RS-41	283.7	Govt.
42	RS-42	40148.6	Govt.
43	RS-43	2240.7	Govt.
44	RS-44	13485.5	Govt.
Total Land =	-120908.6Sqm	· · ·	
Govt. = 101	882.7Sqm.		
Pvt. = 19025			
	1		

Table 5.10 C: Details of Land Required For Stations

S. No	Name of Station	PLOT NO	AREA	OWNER- SHIP	REMARKS
	North South corrido	or: Automotive	Sqre to Khap	ori Station	
1	AUTOMOTIVE SQRE	AS-1	237.9	Pvt.	Open/Shed
I	AUTOWOTIVE SQRE	AS-2	226.0	Pvt.	Structure
2	NARI ROAD	NR-1	285.3	Pvt.	Structure
2	NANINOAD	NR-2	228.6	Pvt.	Structure

S. No	Name of Station	PLOT NO	AREA	OWNER- SHIP	REMARKS
3	INDORA CHOWK	IC-1	237.9	Pvt.	Structure
		IC-2	237.9	Pvt.	Shopes
4	KADVI CHOWK	KC-1	240.5	Govt.	Open
4	KADVI CHOWK	KC-2	235.7	Pvt.	Residential+Shops
5	GADDI GODAM SQRE	GGS-1	234.6	Pvt.	Shops
5	GADDI GODAM SQRE	GGS-2	234.6	Pvt.	Shops
6	KASTURCHAND PARK	KP-1	235.9	Govt.	Open/Parking
0	KASTURCHAND FARK	KP-2	236.2	Pvt.	Residential
7	ZERO MILE	ZM-1	237.9	Pvt.	Structure
7		ZM-2	237.9	Govt.	Open
		SB-1	266.1		Shops+House
8	SITABURDI	SB-2	10.9	Pvt.	Residential
		SB-3	241.3		Restaurent
9	CONGRESS NAGAR	CON-1	236.1	Govt.	Open
9	CONGRESS NAGAR	CON-2	234.7	Pvt.	Residential
10	RAHATE COLONY	RC-1	237.9	Govt.	Open
10	RAHATE COLONT	RC-2	237.9		Open
		AS-1	237.9	Pvt.	Shopping Complex
11	AJNI SQUARE	AS-2	700.2	Govt.	Road
12	CHHATRAPATI	CS-1	240	Govt.	Open
12	SQUARE	CS-2	333.5	Pvt.	Gym
13	JAIPRAKASH NAGAR	JPN-1	240	Govt.	Open
15	JAIFRANAGITNAGAR	JPN-2	339.2	Pvt.	Bharat Chamber
14	UJWAL NAGAR	UN-1	240	Govt.	Open Ground
14	USWAL NAGAR	UN-2	320.3	Pvt.	Shopping Complex
15	AIRPORT	A-1	339.2	Govt	Open
		A-2	339.2		Open Airport Land
16	NEW AIRPORT	NAP-1	5578.3	Govt.	Open
17	KHAPARI	KP-1	7618.1	Govt.	Railway Land
Total Land = 21337.8Sqm		Govt.=752	5.3Sqm	Pvt. =	13812.5Sqm.

S. No	Name of Station	PLOT NO	AREA	OWNER-SHIP	REMARKS
	East West c	orridor: Pra	jati Nagar to	Lokmanya Nagar	
4		PN-1	270.3	Pvt.	Residential
1	PRAJAPATI NAGAR	PN-2	276.7	Govt.	Open
2		VDC-1	272.9	Dut	Residential
2	VAISHNO DEVI CHOWK	VDC-2	269.9	Pvt.	Residential+Shops
3	AMBEDKAR CHOWK	AC-1	276.6	Govt.	Collage+ Residential
3		AC-2	297.1	Pvt.	Shops
4	TELEPHONE EXCHANGE	TE-1	271.8	Pvt.	Residential+ Shops
4		TE-2	270.4		Residential
5	CHITAR OLI CHOWK	COC-1	254.1	Pvt.	Residential
5	(GANDHI PUTALA)	COC-2	273.8		Residential+ Shops
0		AGC-1	269.8		Residential+ Shops
6	AGRASEN CHOWK	AGC-2	272.5	Pvt.	Petrol Pump+ Structure
_	DOSAR VAISYA CHOWK	DVC-1	271.7		
7	(MAYO HOSPITAL)	DVC-2	271.4	Pvt.	Residential
	NAGPUR RAILWAY	NRS-1	280.9		School
8	STATION	NRS-2	290.7	Govt	Railway land
0		SB (I)-1	298.4	Pvt.	Desidence
9	SITABURDI	SB(1)-2	299.5		Residence
40		JRS-1	282.6	Pvt.	Residence
10	JHANSI RANI SQRE	JRS-2	282.8	Govt.	Open
4.4	INSTITUTIONS OF	IOE-1	272.0	Cast	0.000
11	ENGINEERS	IOE-2	276.3	Govt.	Open
12	SHANKAR NAGAR SQRE	SNS-1	279.2	Govt.	Petrol Pump + Residential
	(BANK OF INDIA)	SNS-2	290.4		Residential
13	LAD CHOWK	LC-1	409.6	Pvt.	Residential
15		LC-2	409.6	1 Vt.	Residentia
14	DHARAMPETH COLLEGE	DC-1	276.3	Pvt.	Open
		DC-2	284.8	Govt	
15	SUBHASH NAGAR	SN-1	275.5	Govt.	Open
10		SN-2	276.9		
16	RACHANA(RING RD JNC)	R-1	385.4	Govt.	Open
.0		R-2	291.5	Pvt.	Residential+Shops
17	VASUDEV NAGAR	VN-1	308.9	Pvt.	Residential
		VN-2	290.4	Govt.	Open
18	BANSI NAGAR	BN-1	409.7	Pvt.	Petrol pump
10		BN-2	291.5	i vt.	Structure
19	LOKMANYA NAGAR	LN-1	276.4	Govt.	Open

S. No	Name of Station	PLOT NO	AREA	OWNER-SHIP	REMAR			
		LN-2	277.2					
	Table 5.10 D: DETAILS C	OF LAND RE		PARKING	·			
PARKING LAND OF NAGPUR METRO RAIL PROJECT								
	r	EAST - WEST	CORRIDOR					
S.No	Station Name	Parki	ng Land(Sqm	.) Ownership	Remarks			
1	PRAJAPATI NAGAR		1659.7	Govt.	Open			
2	JHANSI RANI SQRE		3418	Govt.	Open			
3	DHARAMPETH COLLEGE		1752.6	Govt.	Open			
4	RACHANA (RING RD JNC)		1465.7	Pvt.	Open			
5	LOKMANYA NAGAR		1948.8	Govt.	Open			
	Total		10244.8					
	Ν	NORTH-SOUTH	I CORRIDOR					
1	KADVI CHOWK		1037.9	Govt.	Open			
2	KASTURCHAND PARK		9792.2	Govt.	Park			
3	SITABURDI		3780.7	Govt.	Open			
4	RAHATE COLONY		2619.2	Govt.	Pond			
5	AJNI SQUARE		5179.2	Pvt.	Shopes+open			
6	CHHATRAPATI SQUARE		8005.6	Govt.	Open			
7	JAIPRAKASH NAGAR		17239.4		Open			
8	UJWAL NAGAR		6780.3	Govt.	Open			
8	AIRPORT		4504.5	Govt.	Open			
	Total		58939					

Table 5.10E: Abstract of Land Required for Stations and Running Section

LAND REQUIREMENT DETAILS				
	NAGPUR N	IETRO RAIL PROJECT	ſ	
LAND DETAILS	PRAJAPATI NA	ST CORRIDOR GAR TO LOKMANYA AGAR	NORTH-SOUTH CORRIDOR AUTOMATIVE SQUARE TO KHAPRI DEPOT	
	GOVT. LAND (in sqm)	PVT. LAND (in sqm)	GOVT. LAND (in sqm)	PVT. LAND (in sqm)
STATIONS EXIT/ENTRY	3644.80	7769.40	7525.30	13812.50
RUNNING SECTION	3255.30	5680.80	101882.00	19025.90
DEPOT AREA	258973.00		339000.00	
TRAFFIC INTEGRATION/PARKING	8779.10	1465.70	53759.80	5179.20
TOTAL	274652.20	14915.90	502167.10	38017.60
TOTAL GOVT LAND	776819.30 SAY 77.68 HECTARES			
TOTAL PVT LAND	52933.50 SAY 5.3 HECTARES			

5.8.9 Land Staff quarters, office complex and operation control centre (OCC)

A large number of officers and staff will be required to be deployed permanently to take care of project implementation and post construction operational activities. Moreover metro office complex and metro operation control centre will also be required. It is proposed to keep the provision of **5.0 ha** of government land for this purpose. Exact location of land has not been identified at this stage. It may be decided at the time of project implementation.

5.8.10 Temporary Construction Depot/office accommodation

During construction period, huge quantities of construction materials like reinforcing bars, cement, steel sections, shutters, pre-cast segments etc. are to be stored and sufficient land is required for storage of these materials. The areas may be identified based on availability as vacant on date nearer to the corridors. At the time of construction, depending up on the need the location and size can be reassessed and temporary land acquisitions can be made accordingly.

Since the area of land being acquired permanently at most of the stations is bare minimum, the land required for construction depots purpose has been considered throughout the corridor @ 2hect. at every 10 km. These sites will be obtained on lease temporarily for the construction period. After completion of construction, these will be handed over back to the land owning agency. The location of these sites will be finalized with NIT before the commencement of Tendering Work.

5.8.11 Segment Casting Yard

Large numbers of pre-cast segments are required for construction of elevated structures for which a large open area is required for setting up of casting yard. As far as possible, this area should be close to the site, easily accessible and away from habitation. Considering the various factors, it is proposed to setup one yard for both the corridors. It is proposed to setup two segment casting yards one for underground sections and another elevated sections. Provision of **5.0 ha** of land for both the casting yards on temporary basis has been made.

5.9 UTILITY DIVERSIONS

5.9.1 Introduction

Besides the details of various aspects e.g. transport demand analysis, route alignment, station locations, system design, viaduct structure, geo-technical investigations etc. as brought out in previous paras, there are a number of other engineering issues, which are

required to be considered in sufficient details before really deciding on taking up any infrastructure project of such magnitude. Accordingly, following engineering items have been studied and described in this para.

• Existing underground and at surface utilities and planning for their diversion during construction, if necessary.

5.9.2 Utility and Services

The DMRC has collected details of various utilities through topography survey.

Large number of sub-surface, surface and over head utility services viz. sewers, water mains, storm water drains, telephone cables, O.H electrical transmission lines, electric poles, traffic signals, etc. are existing along the proposed alignment. These utility services are essential and have to be maintained in working order during different stages of construction, by temporary/permanent diversions or by supporting in position. Since these may affect construction and project implementation time schedule/costs, for which necessary planning/action needs to be initiated in advance.

Organizations/Departments with concerned utility services in Nagpur are mentioned in **Table 5.11.**

Sr. No.	ORGANIZATION/DEPARTMENT	UTILITY SERVICES
1.	Nagpur Municipal Corporation (NMC)	Roads, surface water drains, nallahs, Sewerage and drainage conduits, sewerage treatment plants, pumping stations, Water mains and their service lines, including hydrants, water treatment plants, pumping stations, Gardens etc.
2.	NIT	Road construction & maintenance of State highways. Overall co-ordination among all concerned departments
3.	Water Works, Nagpur Municipal Corporation	Nallahs/flood water drains etc.
4.	MSEDCL	Power cables and their appurtenances H.T. and L.T. lines, their pylons, electric light posts, pole mounted transformers, etc.

Table 5.11: Utility Responsibility Departments

Sr. No.	ORGANIZATION/DEPARTMENT	UTILITY SERVICES
5.	Bharat Sanchar Nigam Ltd. (BSNL)	Telecommunication cables, junction boxes, telephone posts, O.H. lines, etc.
6.	Nagpur Traffic Police	Traffic signal posts, junction boxes and cable connections, etc.

Assessment of the type and location of underground utilities running along and across the proposed route alignment at Nagpur will be undertaken with the help of data available with concerned authorities, who generally maintain plans and data of such utility services. Particulars of main utilities i.e. trunk and main sewers/drainage conduits, water mains, OH & UG Electric cable, Telecom cable etc. have been marked on alignment plans.

5.9.3 Diversion of Underground Utilities

While planning for diversion of underground utility services viz. sewer lines, water pipelines, cables, etc., during construction of MRTS alignment, following guidelines have been adopted:

- Utility services have to be kept operational during the entire construction period and after completion of project. All proposals should therefore, ensure their uninterrupted functioning.
- Sewer lines and water supply lines are mainly affected in underground cut and cover construction. These services are proposed to be maintained by temporarily replacing them with CI/Steel pipelines and supporting them during construction, these will be encased in reinforced cement concrete after completion of construction and retained as permanent lines
- Where permanent diversion of the affected utility is not found feasible, temporary diversion with CI/Steel pipes without manholes is proposed during construction. After completion of construction, these will be replaced with conventional pipes and manholes.
- The elevated viaduct does not pose much of a difficulty in negotiating the underground utility services, especially those running across the alignment. The utilities infringing at pier location can be easily diverted away from the pile cap location.
- In case a major utility is running along/across the alignment which cannot be diverted or the diversion of which is difficult, time consuming and uneconomical, the spanning arrangement of the viaduct and layout of piles in the foundation may be suitably adjusted to ensure that no foundation needs be constructed at the location, where utility is crossing the proposed alignment. The utility service can also be encased within the foundation piles.

5.9.4 Underground Stretch and Switch Over Ramp

The underground section in both the corridor is for a length of approx 3 km. As indicated in the previous paras due to various reasons, the entire length of underground section is proposed to be constructed with tunneling keeping a minimum cover of about 6m above the tunnel, except at stations which will be constructed by cut and cover method. Hence, the utility services existing in above ground or below ground position are not likely to be affected in underground stretch of the alignment except at station locations. Details of such affected utility services at station locations are indicated in **Table 5.12 to Table 5.17**.

5.9.5 Elevated Stretch

The stretch of both the corridors is elevated and is almost in the center of the road except at few locations as detailed in the Alignment description.

5.9.6 Sewer Lines, Storm Water Drains and Water Lines

The sewer/drainage lines generally exist in the service lanes i.e. away from main carriageway. However, in certain stretches, these fall near the central verge or under main carriageway, as a result of subsequent road widening.

The major sewer/drainage lines and water mains running across the alignment and likely to be affected due to location of column foundations are proposed to be taken care of by relocating on column supports of viaduct by change in span or by suitably adjusting the layout of pile foundations. Where, this is not feasible, lines will be suitably diverted. Provision has been made in the project cost estimate towards diversion of utility service lines. Details of such utilities is given below.

S. No.	Chainage	Dia (Inches)	Description	Diversion Proposal
1	194.424	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
2	644.379 to 2550	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
3	1180.377	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
4	1564.371	16	Alignment Crossing the Pipe Line	To be shifted /Diverted
5	1811.525	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
6	1963.366	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
7	2276.356	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
8	2314.353	15	Alignment Crossing the Pipe Line	To be shifted /Diverted
9	2318.353	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
10	2717.322	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
11	3000 to 3100	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
12	3367.7	36	Alignment Crossing the Pipe Line	To be shifted /Diverted

Table 5.12List of Affected Water Supply Lines North South Corridor

S. No.	Chainage	Dia (Inches)	Description	Diversion Proposal
13	3517.3 to 3642.4	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
14	4068.9	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
15	4458.3	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
16	4463.5	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
17	4516.9 to 4641.4	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
18	4650 to 4750	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
19	5103.6	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
20	5122.5	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
21	5050 to 5150	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
22	5615.0	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
23	6001.6	18	Alignment Crossing the Pipe Line	To be shifted /Diverted
24	6007.8	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
25	6383.4	18	Alignment Crossing the Pipe Line	To be shifted /Diverted
26	6470.5	13	Alignment Crossing the Pipe Line	To be shifted /Diverted
27	6742.3	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
28	6774.9	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
29	7378.6	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
30	7379.9	2	Alignment Crossing the Pipe Line	To be shifted /Diverted
31	7503.3	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
32	7516.9	2	Alignment Crossing the Pipe Line	To be shifted /Diverted
33	7640.9	2	Alignment Crossing the Pipe Line	To be shifted /Diverted
34	7806.5	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
35	7849.0 to 7987.9	16	Alignment Crossing the Pipe Line	To be shifted /Diverted
36	8149.2	28	Alignment Crossing the Pipe Line	To be shifted /Diverted
37	8175.2	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
38	8312.7	28	Alignment Crossing the Pipe Line	To be shifted /Diverted
39	8637.8	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
40	8793.4	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
41	9240.2	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
42	10000.7	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
43	10005.5	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
44	10746.5	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
45	11057.2	12	Alignment Crossing the Pipe Line	To be shifted /Diverted

S. No.	Chainage	Dia (Inches)	Description	Diversion Proposal
46	11087.2	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
47	11127.8	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
48	11424.8	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
49	11584.0	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
50	11659.5	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
51	11720.8	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
52	11895.6	14	Alignment Crossing the Pipe Line	To be shifted /Diverted
53	12068.2	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
54	12129.4	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
55	12214.4	14	Alignment Crossing the Pipe Line	To be shifted /Diverted
56	12294.1	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
57	12322.7 to 12334.6	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
58	13999.5	6	Alignment Crossing the Pipe Line	To be shifted /Diverted

Table 5.13 List of Affected Water Supply Lines on East West Corridor

S.No.	Chainage	Dia (Inches)	Description	Diversion Proposal
1	220.1	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
2	258.1	28	Alignment Crossing the Pipe Line	To be shifted /Diverted
3	435.0	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
4	851.9	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
5	1086.5	36	Alignment Crossing the Pipe Line	To be shifted /Diverted
6	1067.7	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
7	1102.1	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
8	1170.5	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
9	1456.5	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
10	1486.9	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
11	2463.6	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
12	2672.0	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
13	2965.4	36	Alignment Crossing the Pipe Line	To be shifted /Diverted
14	2968.8	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
15	3520.7	16	Alignment Crossing the Pipe Line	To be shifted /Diverted

S.No.	Chainage	Dia	Description	Diversion Proposal
16	3532.0	15	Alignment Crossing the Pipe Line	To be shifted /Diverted
17	3563.7	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
18	3782.1	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
19	4059.9	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
20	4090.1	18	Alignment Crossing the Pipe Line	To be shifted /Diverted
21	4091.8	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
22	4173.7	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
23	4187.5	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
24	4491.5	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
25	4662.9	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
26	4926.6	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
27	5005.8	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
28	5021.4	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
29	5491.1	12	Alignment Crossing the Pipe Line	To be shifted /Diverted
30	5501.0	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
31	5706.4	7	Alignment Crossing the Pipe Line	To be shifted /Diverted
32	5793.7 to 5878.2	24	Alignment Crossing the Pipe Line	To be shifted /Diverted
33	5980.1	15	Alignment Crossing the Pipe Line	To be shifted /Diverted
34	6087.6	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
35	6885.3	18	Alignment Crossing the Pipe Line	To be shifted /Diverted
36	6886.5	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
37	6902.9 to 6906.6	13,12 & 6	Alignment Crossing the Pipe Line	To be shifted /Diverted
38	6934.5 to 6964.1	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
39	7033.8	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
40	7095.6	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
41	7279.5 to 7284.1	12 & 6	Alignment Crossing the Pipe Line	To be shifted /Diverted
42	7711.2	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
43	7783.3	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
44	7100 to 7150	12 & 13	Alignment Crossing the Pipe Line	To be shifted /Diverted
45	8764.2	3	Alignment Crossing the Pipe Line	To be shifted /Diverted
46	9264.8	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
47	9585.5	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
48	10172.8	9	Alignment Crossing the Pipe Line	To be shifted /Diverted
49	10759.8 to 10764.3	24 & 28	Alignment Crossing the Pipe Line	To be shifted /Diverted

(=

S.No.	Chainage	Dia	Description	Diversion Proposal
50	11258.0	28	Alignment Crossing the Pipe Line	To be shifted /Diverted
51	11457.2	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
52	11768.2	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
53	12201.8	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
54	12423.7	27	Alignment Crossing the Pipe Line	To be shifted /Diverted
55	13324.3	4	Alignment Crossing the Pipe Line	To be shifted /Diverted
56	13990.5	8	Alignment Crossing the Pipe Line	To be shifted /Diverted
57	14272.7	6	Alignment Crossing the Pipe Line	To be shifted /Diverted
58	14598.0	10	Alignment Crossing the Pipe Line	To be shifted /Diverted
59	14913.8	8	Alignment Crossing the Pipe Line	To be shifted /Diverted

Table 5.14: List of Affected H.T. Line on North – South Corridor

S. No.	Chainage (m)	Description	Diversion Proposal	Remarks
1	177.034	H.T. Line	To be shifted /Diverted	Across the alignment
2	1565.600	H.T. Line	To be shifted /Diverted	Across the alignment
3	1907.118	H.T. Line	To be shifted /Diverted	Across the alignment
4	3448.134	H.T. Line	To be shifted /Diverted	Across the alignment
5	5772.475	H.T. Line	To be shifted /Diverted	Across the alignment
	6699.209 to			
6	6723.715	H.T. Line	To be shifted /Diverted	Along the alignment
7	6740.048	H.T. Line	To be shifted /Diverted	Across the alignment
8	6810.316	H.T. Line	To be shifted /Diverted	Across the alignment
9	8176.938	H.T.Line	To be shifted /Diverted	Across the alignment
10	9289.166	H.T.Line	To be shifted /Diverted	Across the alignment
11	10110.245	H.T.Line	To be shifted /Diverted	Across the alignment
12	10320.675	H.T.Line	To be shifted /Diverted	Across the alignment
13	10960.690	H.T.Line	To be shifted /Diverted	Across the alignment
14	11043.505	H.T.Line	To be shifted /Diverted	Across the alignment
15	11079.985	H.T.Line	To be shifted /Diverted	Across the alignment
16	11123.420	H.T.Line	To be shifted /Diverted	Across the alignment
17	11426.639	H.T.Line	To be shifted /Diverted	Across the alignment
18	11480.507	H.T.Line	To be shifted /Diverted	Across the alignment
19	11654.342	H.T.Line	To be shifted /Diverted	Across the alignment

S. No.	Chainage (m)	Description	Diversion Proposal	Remarks
20	11795.474	H.T.Line	To be shifted /Diverted	Across the alignment
21	11863.563	H.T.Line	To be shifted /Diverted	Across the alignment
22	12107.901	H.T.Line	To be shifted /Diverted	Across the alignment
23	12228.040	H.T.Line	To be shifted /Diverted	Across the alignment
24	12293.667	H.T.Line	To be shifted /Diverted	Across the alignment
25	12342.128	H.T.Line	To be shifted /Diverted	Across the alignment
26	20563.075	H.T.Line	To be shifted /Diverted	Across the alignment

Table 5.15: List of Affected H.T. Poles on North – South Corridor

S. No.	Chainage (m)	Description	Nos.	Remarks
1	6712.088	HT Line pole	1	To be shifted /Diverted
2	6714.648	HT Line pole	1	To be shifted /Diverted
3	6720.222	HT Line pole	1	To be shifted /Diverted
4	6723.267	HT Line pole	1	To be shifted /Diverted
5	6799.051	HT Line pole	1	To be shifted /Diverted
6	8346.091	HT Line pole	1	To be shifted /Diverted
7	12107.142	HT Line pole	2	To be shifted /Diverted
8	12328.163	HT Line pole	1	To be shifted /Diverted
TOTAL			9	

Table 5.16: List of Affected H.T. Line East West Corridor

S.No.	Chainage (m)	Description	Diversion Proposal	Remarks
	5794.174 to			
1	5885.633	H.T.Line	To be shifted /Diverted	Along the alignment
2	6098.419	H.T.Line	To be shifted /Diverted	Across the alignment
3	6116.585	H.T.Line	To be shifted /Diverted	Across the alignment
4	6449.289	H.T.Line	To be shifted /Diverted	Across the alignment
5	6807.847	H.T.Line	To be shifted /Diverted	Across the alignment
6	6931.295	H.T.Line	To be shifted /Diverted	Across the alignment
7	6936.945	H.T.Line	To be shifted /Diverted	Across the alignment
8	6975.686	H.T.Line	To be shifted /Diverted	Across the alignment
9	7281.061	H.T.Line	To be shifted /Diverted	Across the alignment

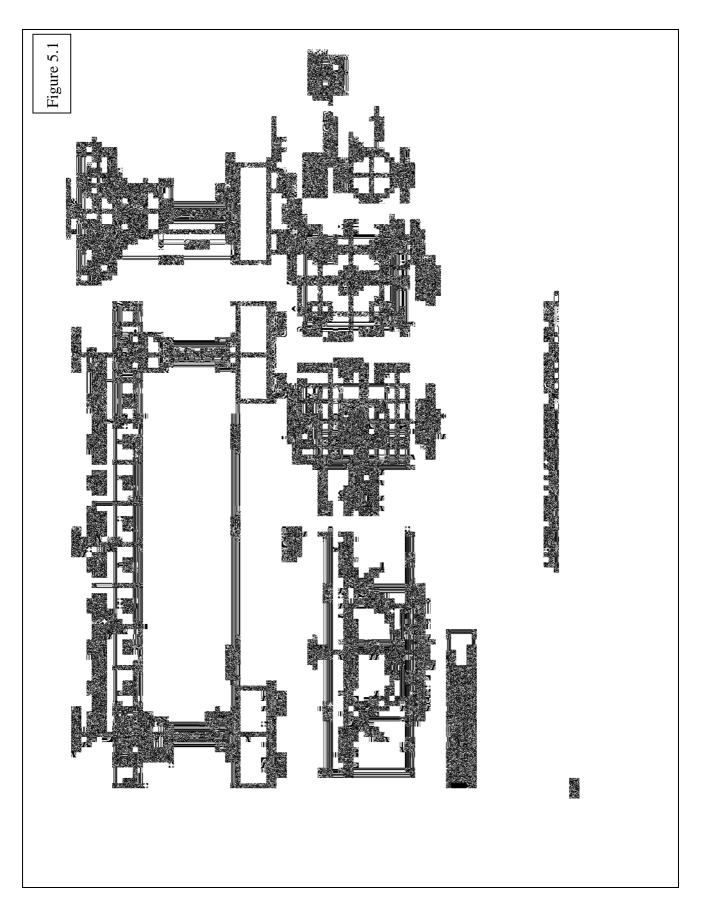
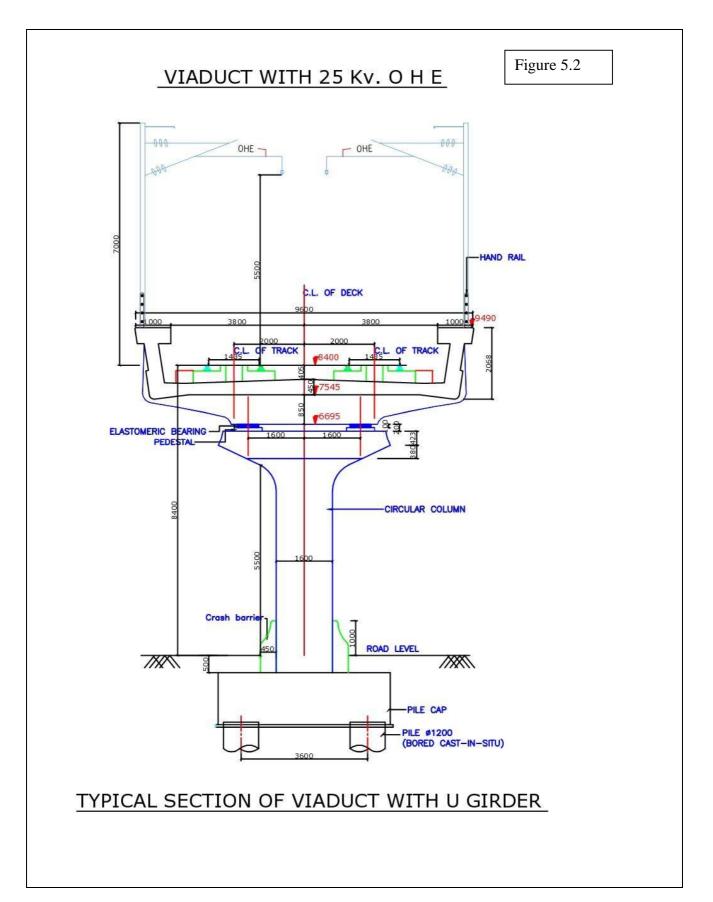
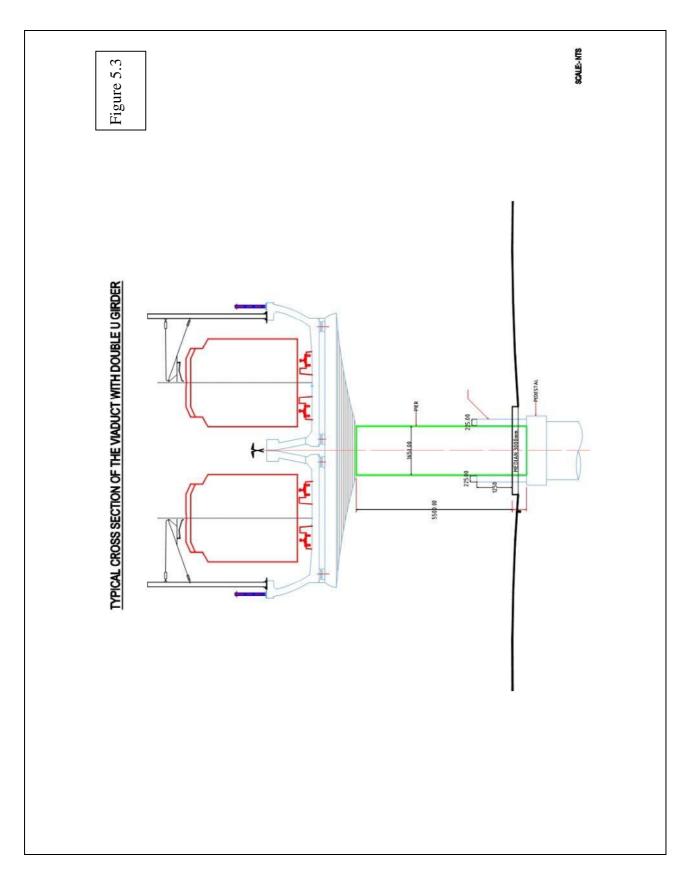
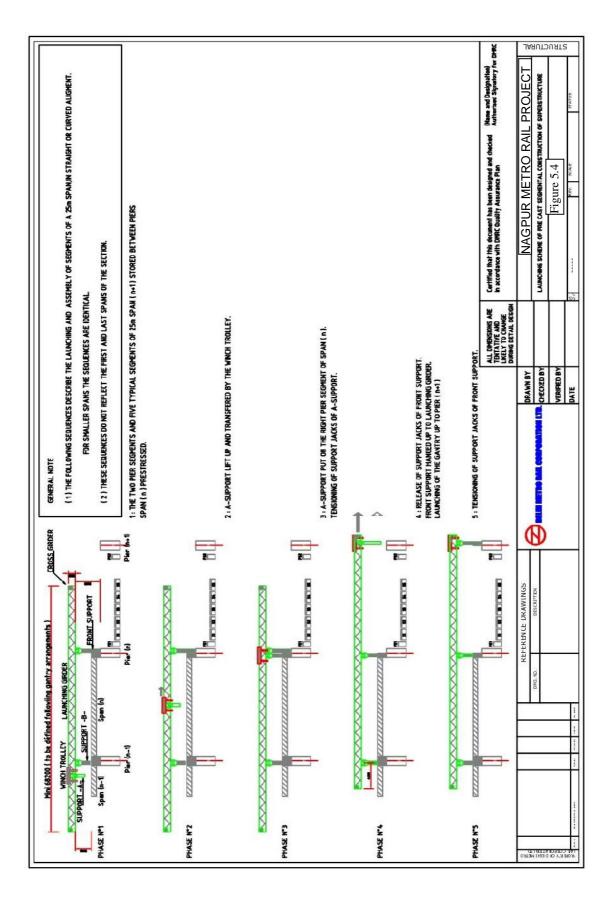

S.No.	Chainage (m)	Description	Diversion Proposal	Remarks
10	7295.523	H.T.Line	To be shifted /Diverted	Across the alignment
11	7547.827	H.T.Line	To be shifted /Diverted	Across the alignment
12	7591.701	H.T.Line	To be shifted /Diverted	Across the alignment
13	7707.968	H.T.Line	To be shifted /Diverted	Across the alignment
14	7768.575	H.T.Line	To be shifted /Diverted	Across the alignment
15	7814.073	H.T.Line	To be shifted /Diverted	Across the alignment
16	10126.058	H.T.Line	To be shifted /Diverted	Across the alignment
17	11151.141	H.T.Line	To be shifted /Diverted	Across the alignment
18	12165.311	H.T.Line	To be shifted /Diverted	Across the alignment
19	13970.942	H.T.Line	To be shifted /Diverted	Across the alignment
20	15318.343	H.T.Line	To be shifted /Diverted	Across the alignment
21	15820.202	H.T.Line	To be shifted /Diverted	Across the alignment
22	16206.946	H.T.Line	To be shifted /Diverted	Across the alignment
23	16574.747	H.T.Line	To be shifted /Diverted	Across the alignment
24	16929.842	H.T.Line	To be shifted /Diverted	Across the alignment

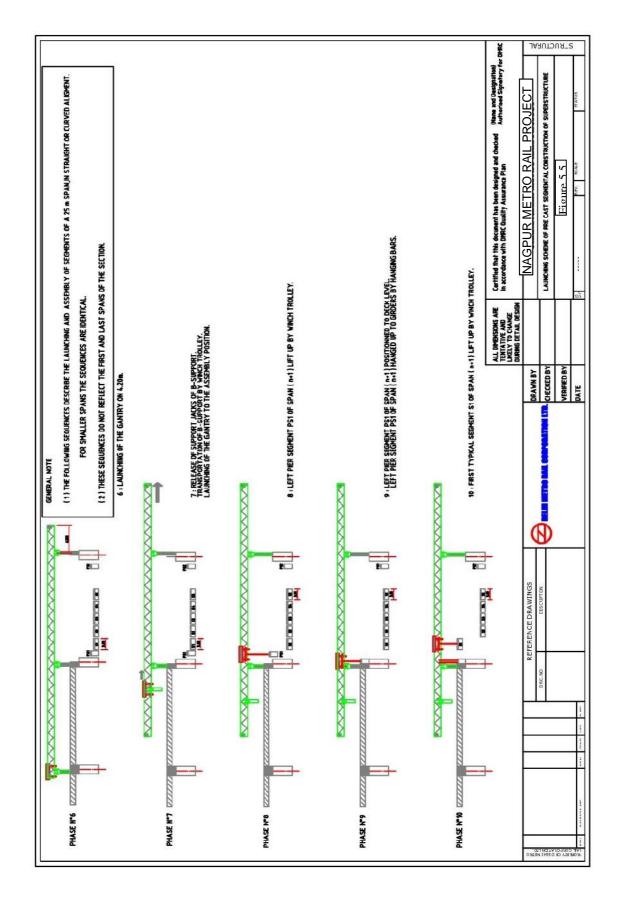
Table 5.17: List of Affected H.T. Line Poles East West Corridor

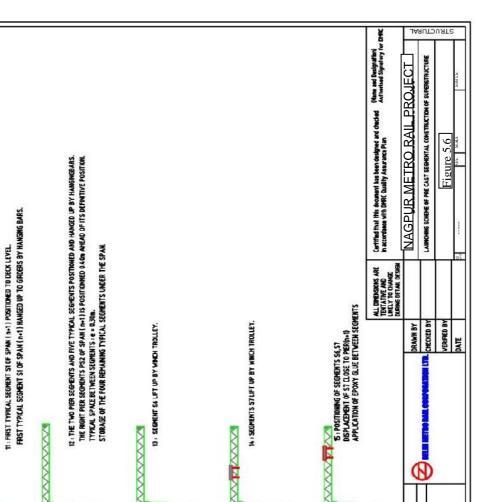

S.No.	Chainage (m)	Description	NOs.	Remarks
1	5794.174	HT Line Pole	1	To be shifted /Diverted
2	5826.677	HT Line Pole	1	To be shifted /Diverted
3	6100.885	HT Line Pole	1	To be shifted /Diverted
4	6980.015	HT Line Pole	1	To be shifted /Diverted
5	7285.225	HT Line Pole	1	To be shifted /Diverted
6	11561.204	HT Line Pole	3	To be shifted /Diverted
7	11726.849	HT Line Pole	4	To be shifted /Diverted
	TOTAL			To be shifted /Diverted

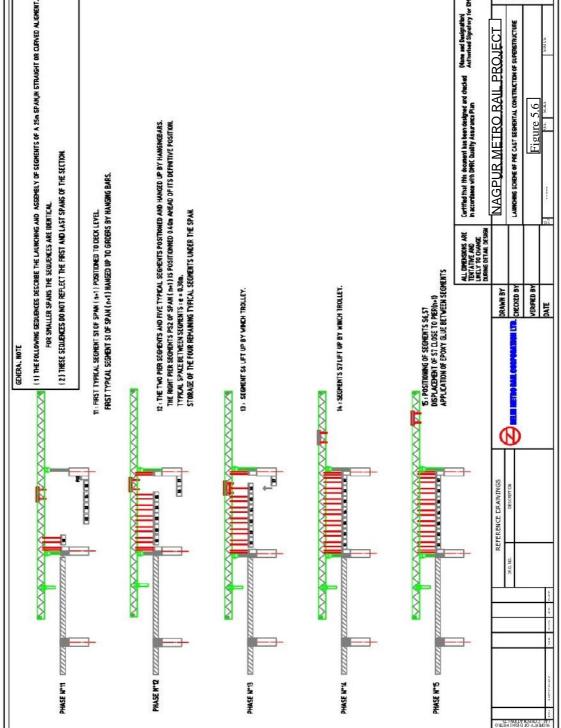
Apart from this some other ground utilities, interfering with the proposed alignments, namely street light poles, traffic signal posts, telecommunication posts, junction boxes, etc. are also required to be shifted and relocated suitably during construction of elevated viaduct.

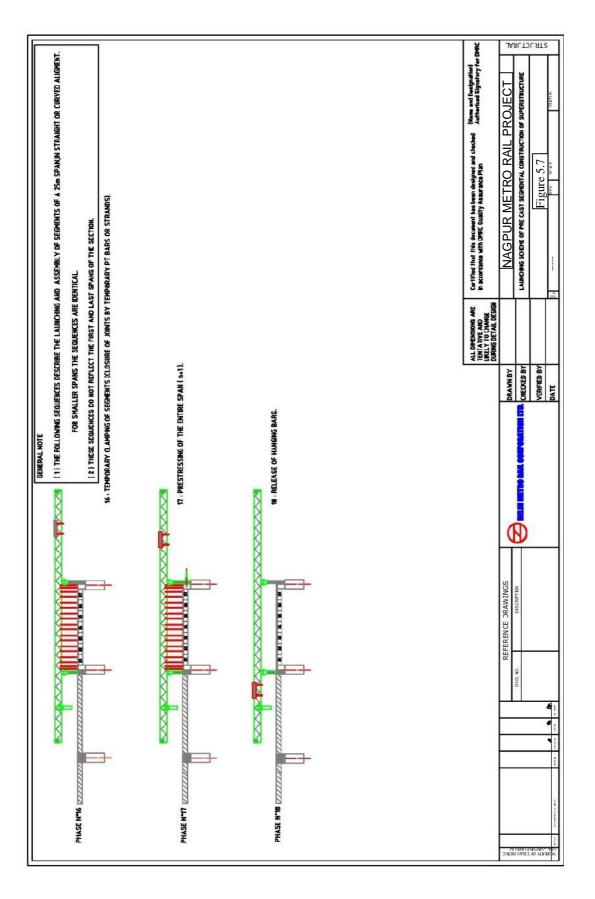


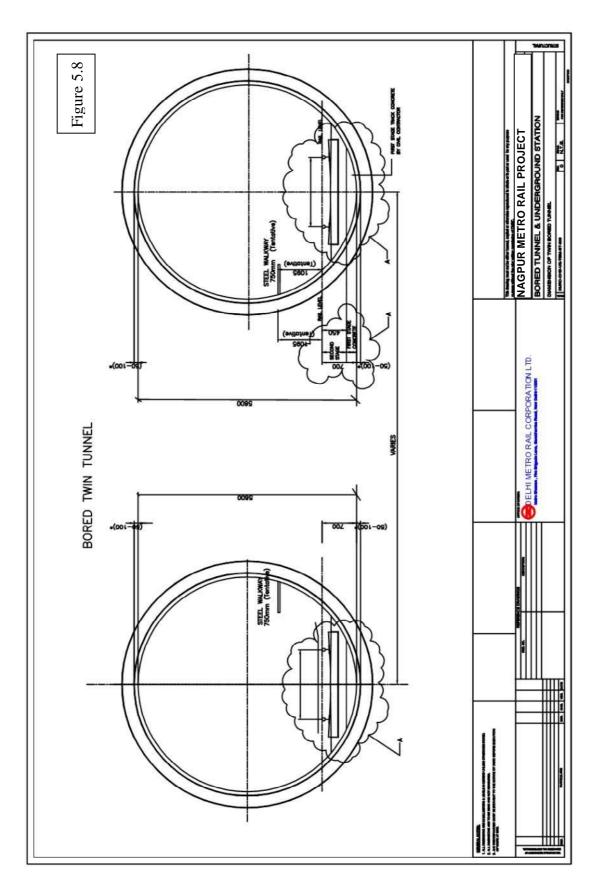


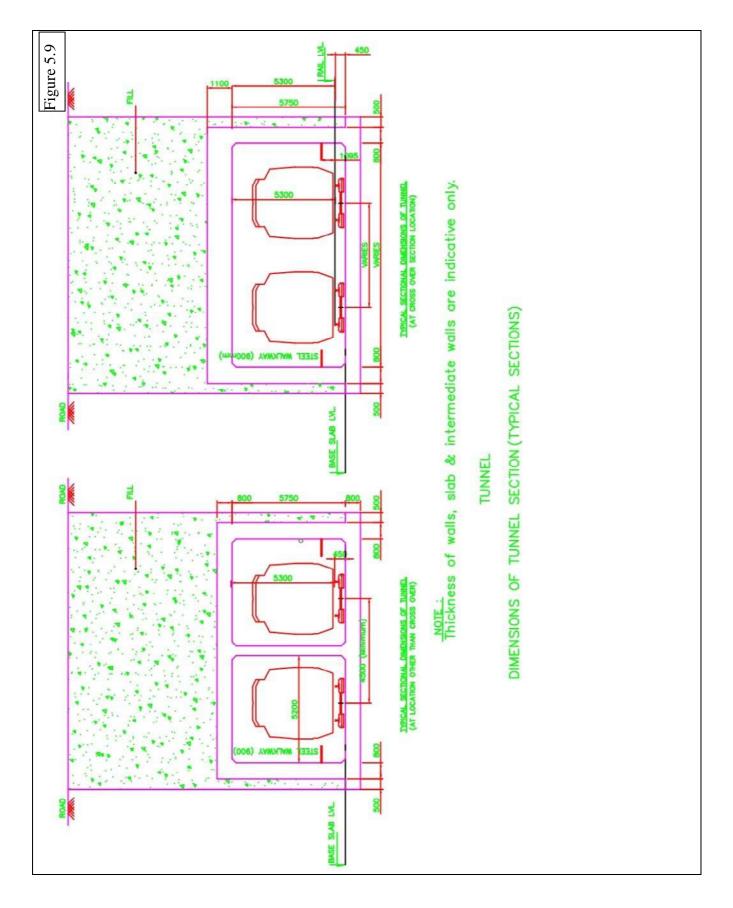


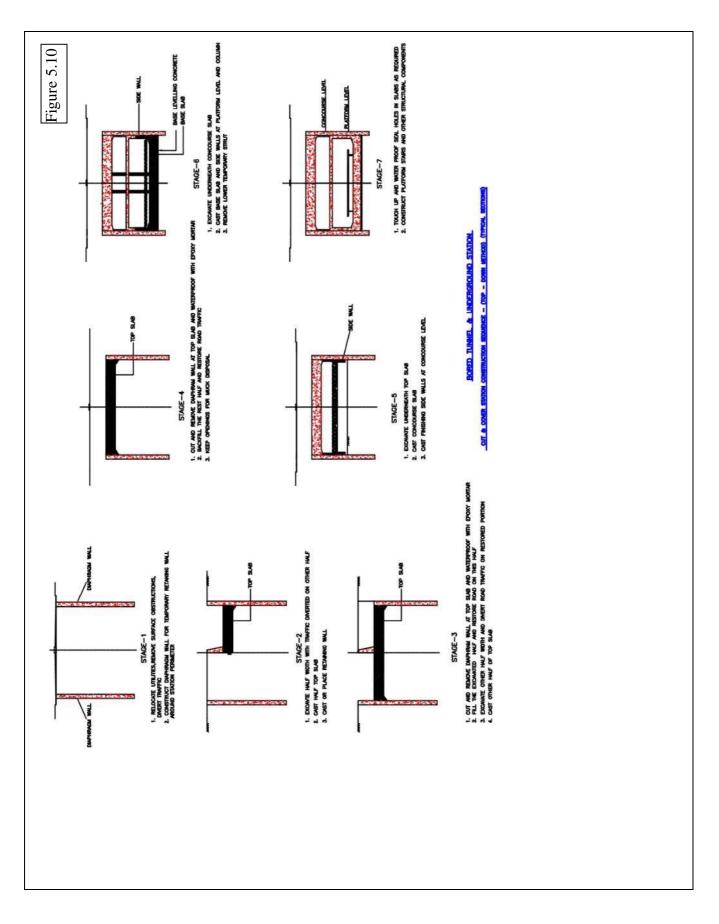


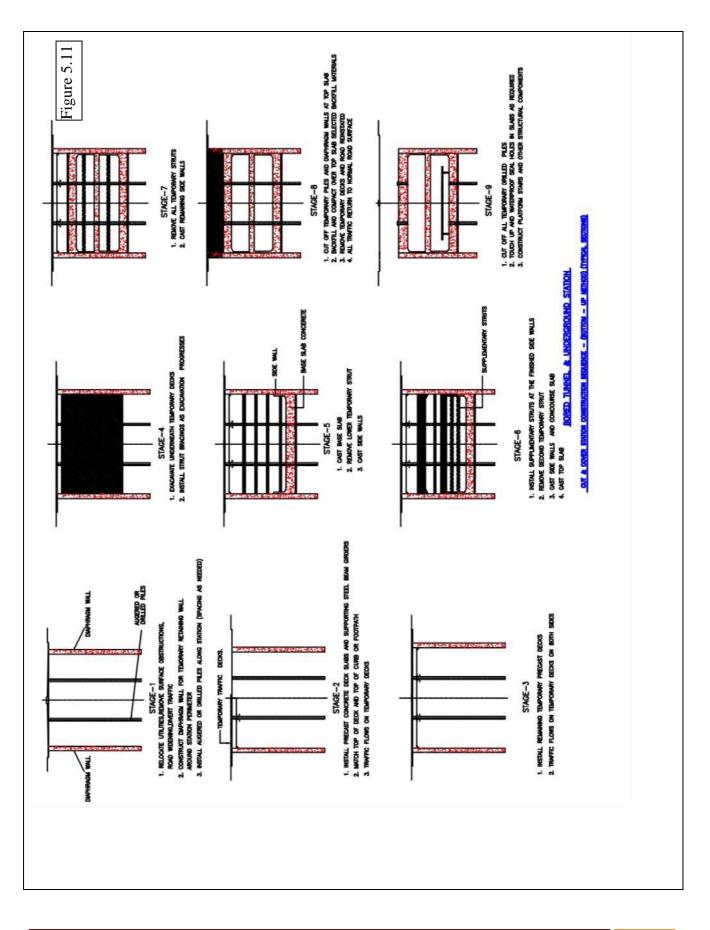


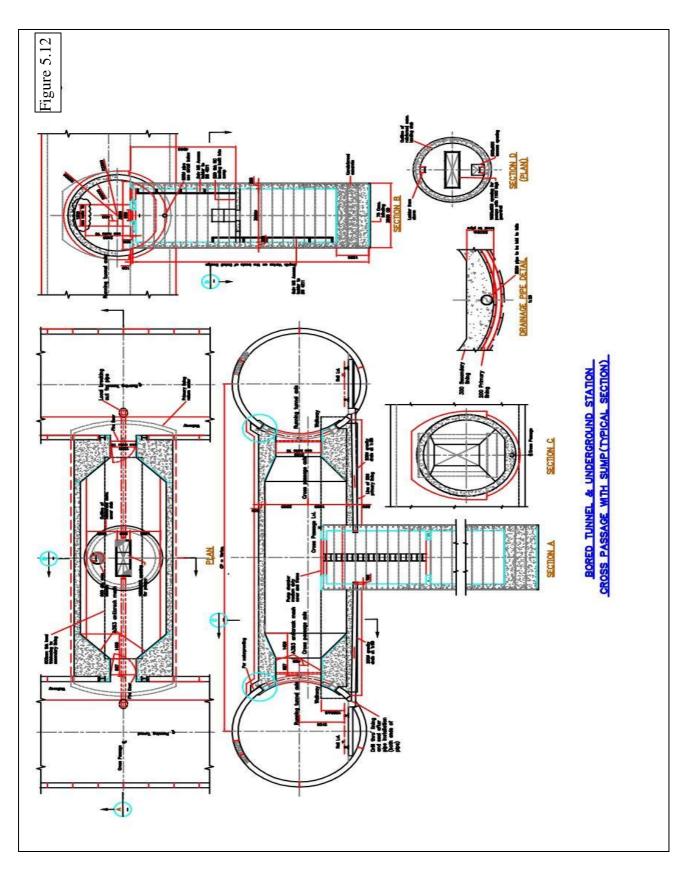


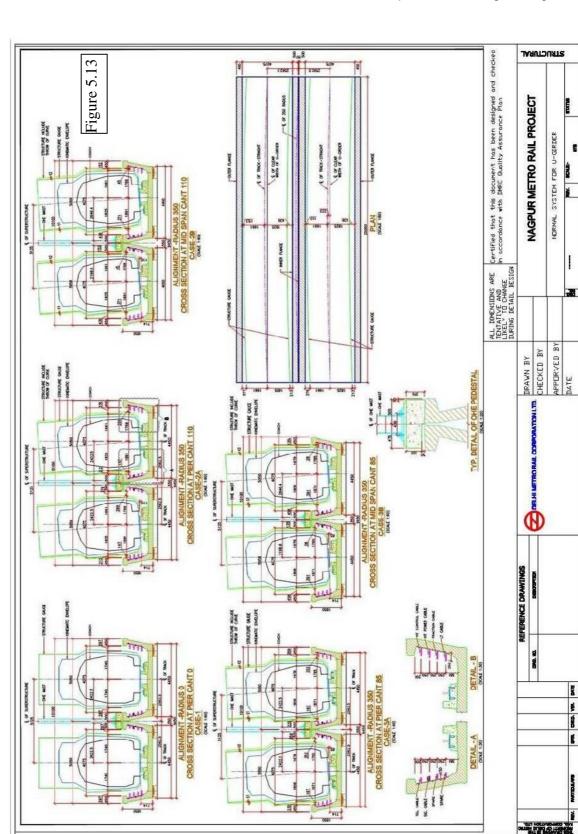




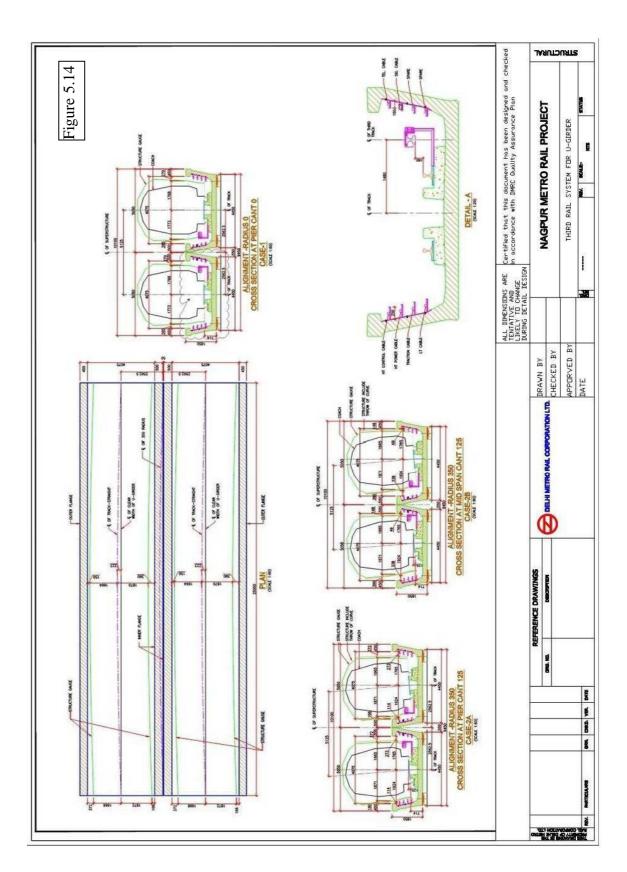




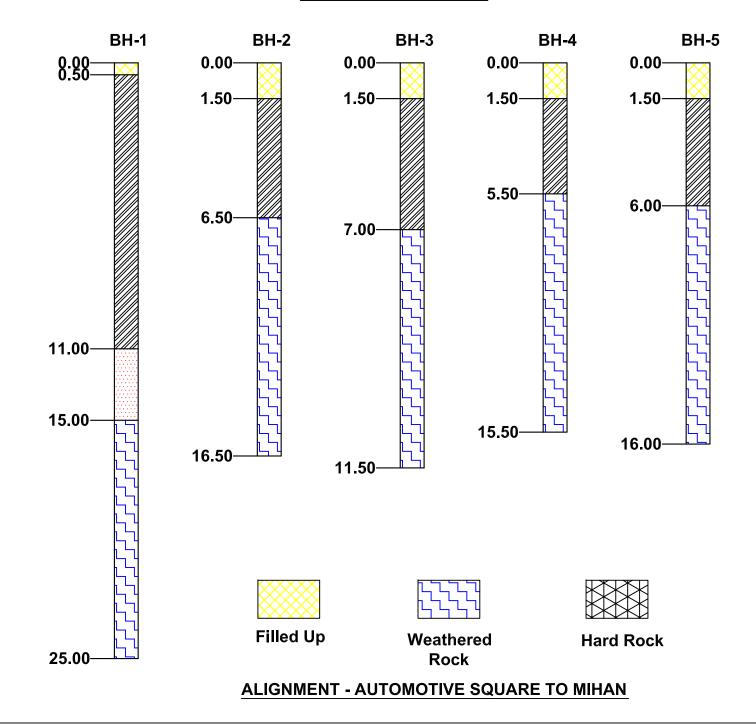




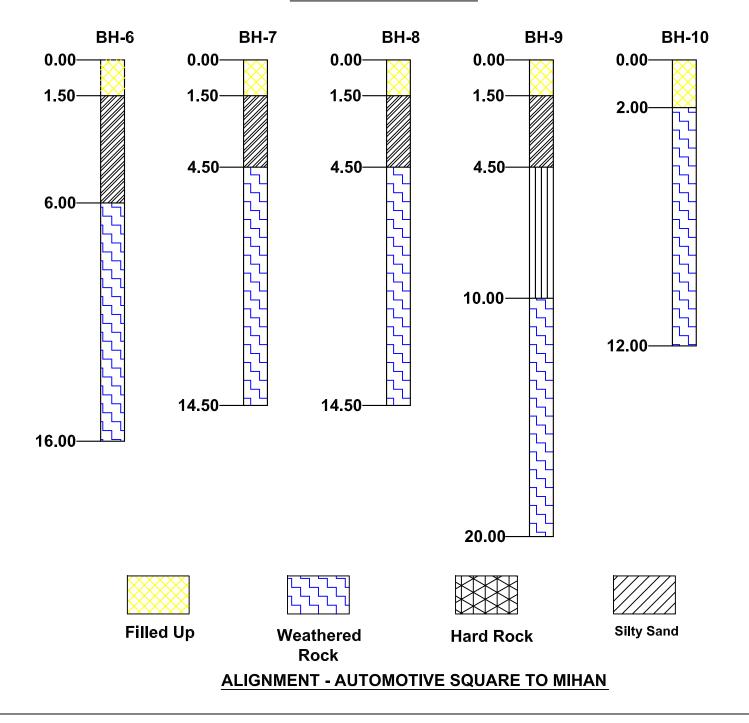
.

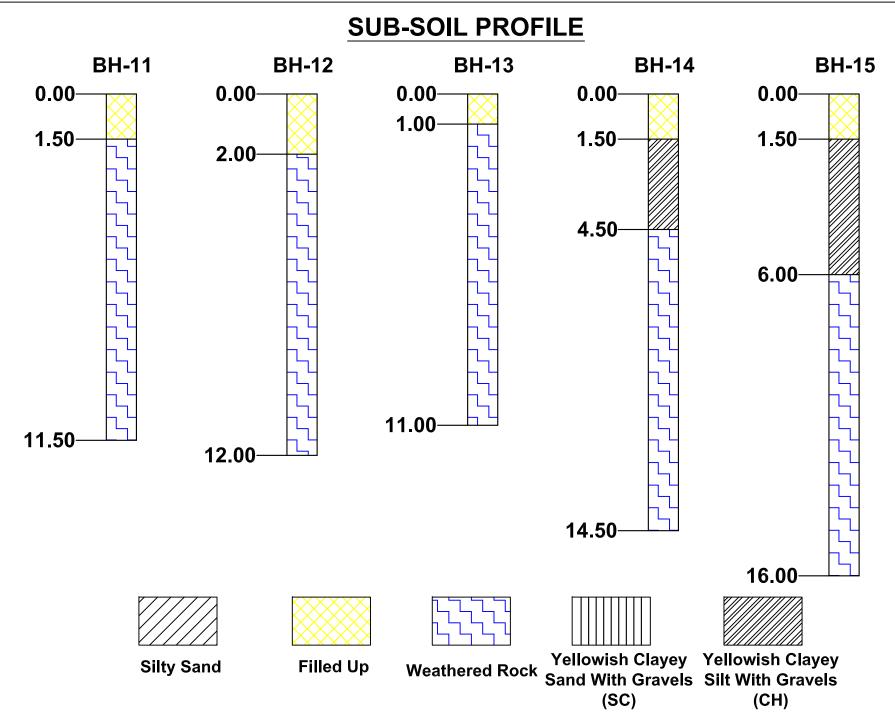


E

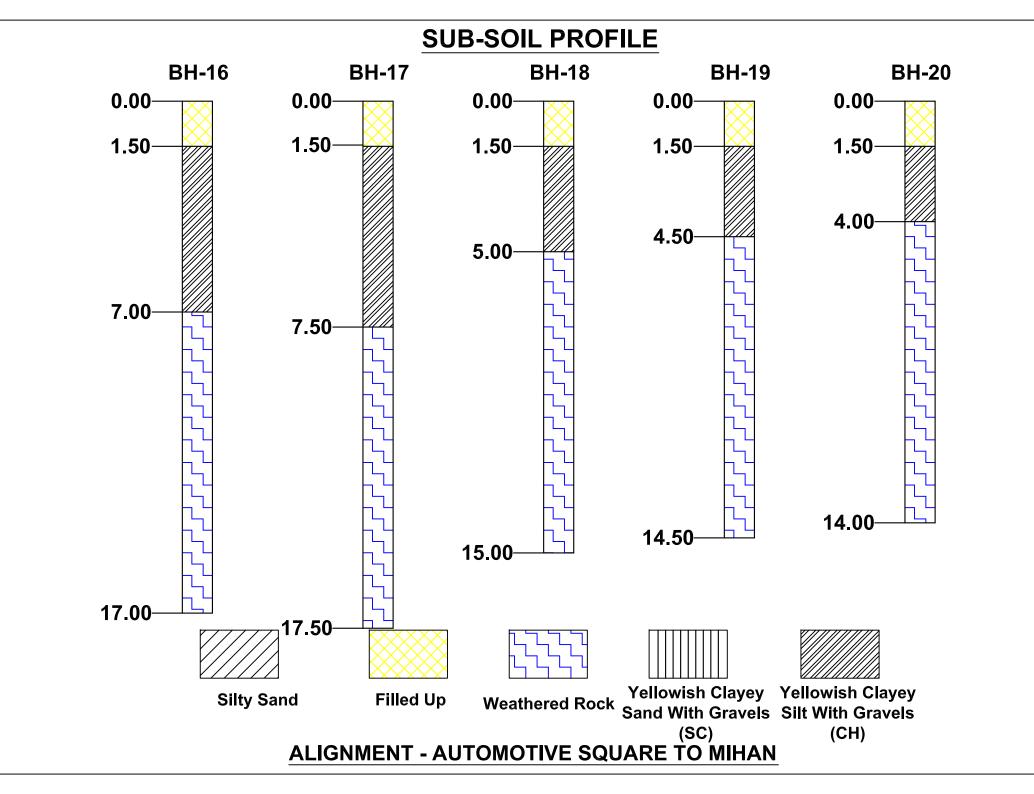

55/56

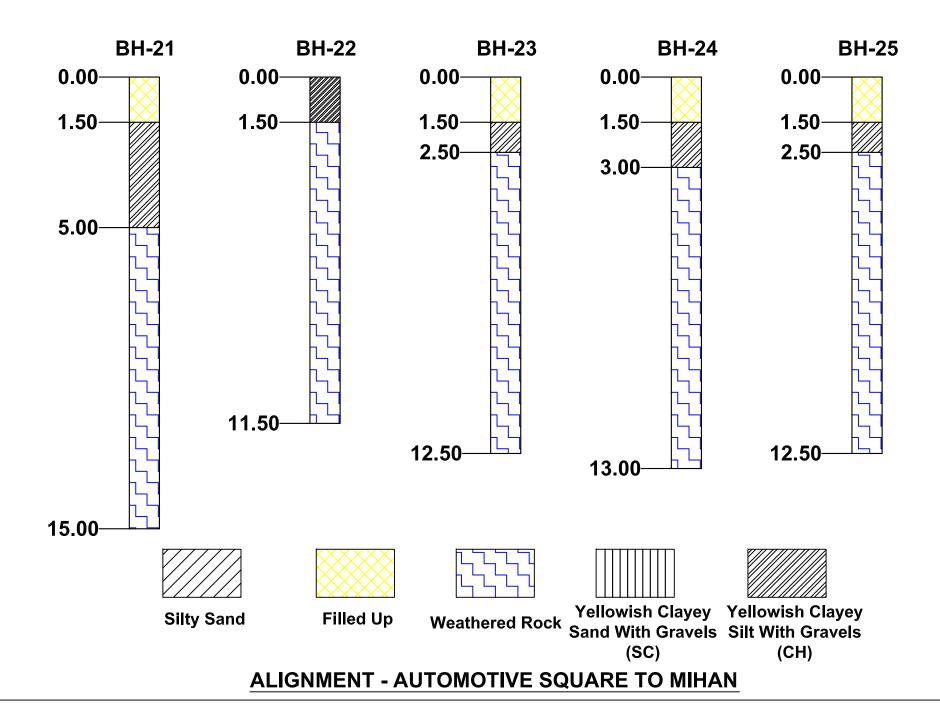
ş

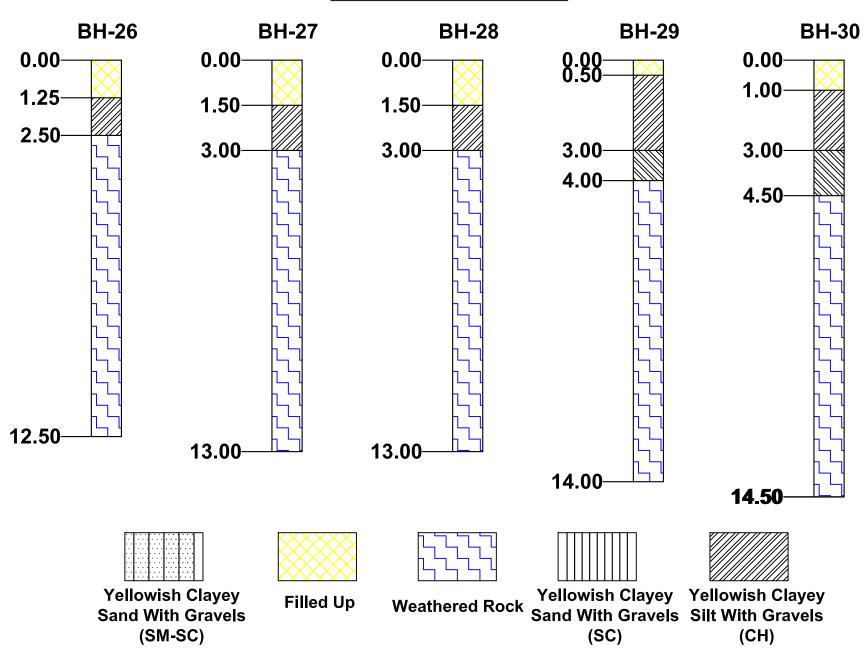

ž

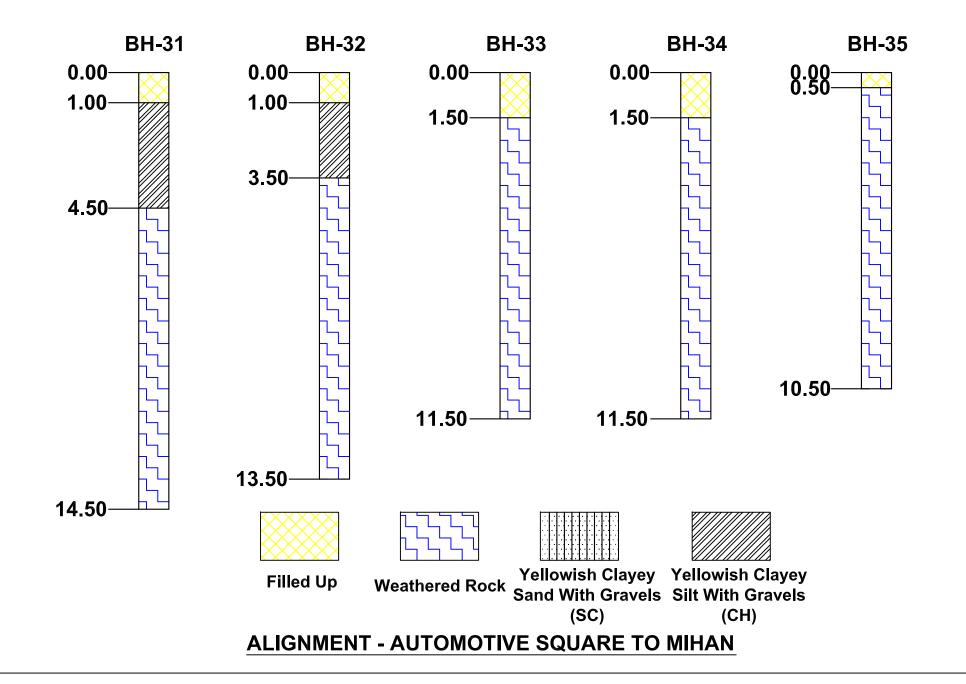


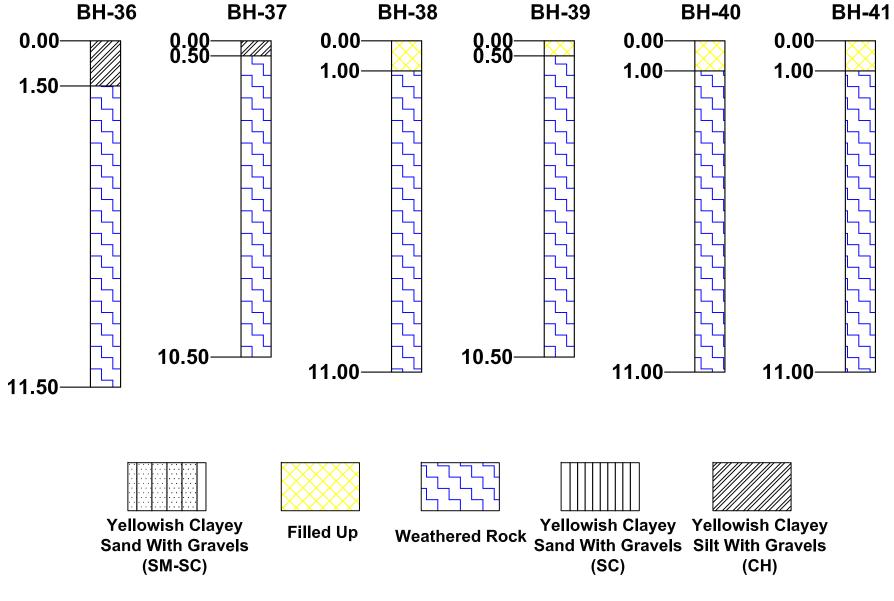
SUB-SOIL PROFILE

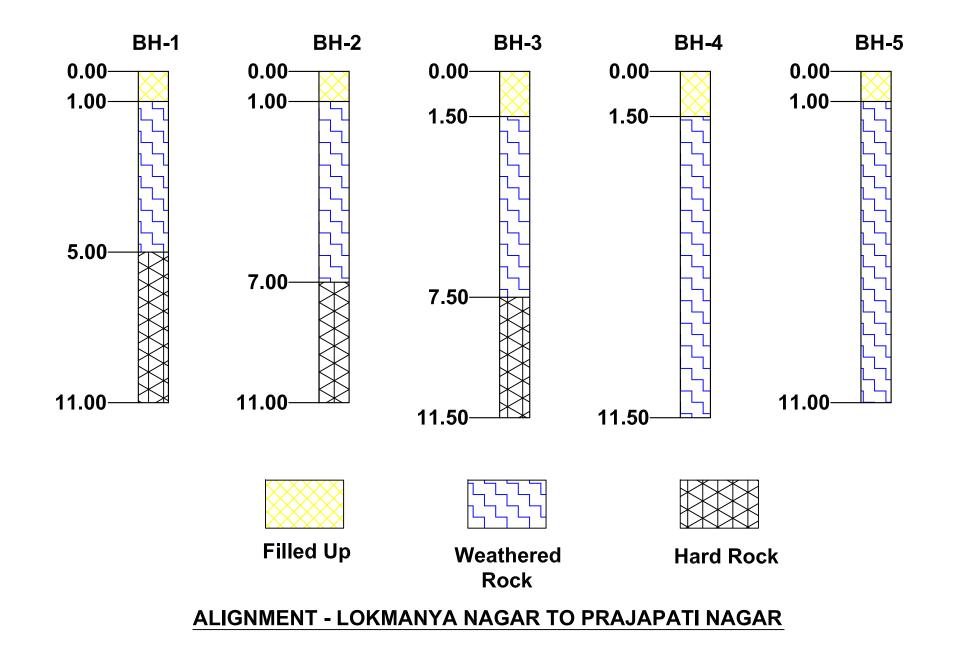


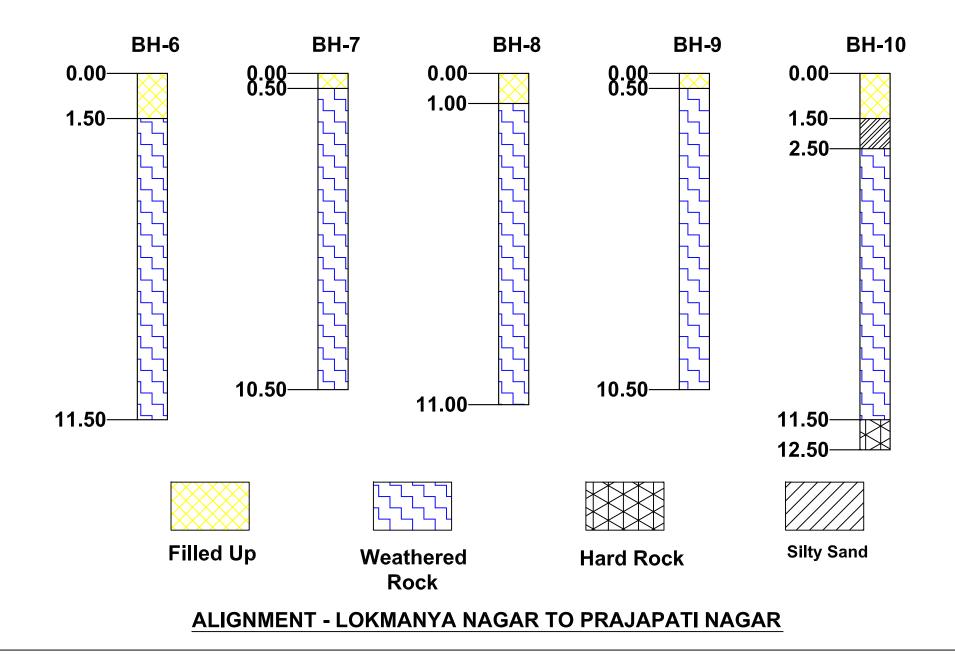

SUB-SOIL PROFILE

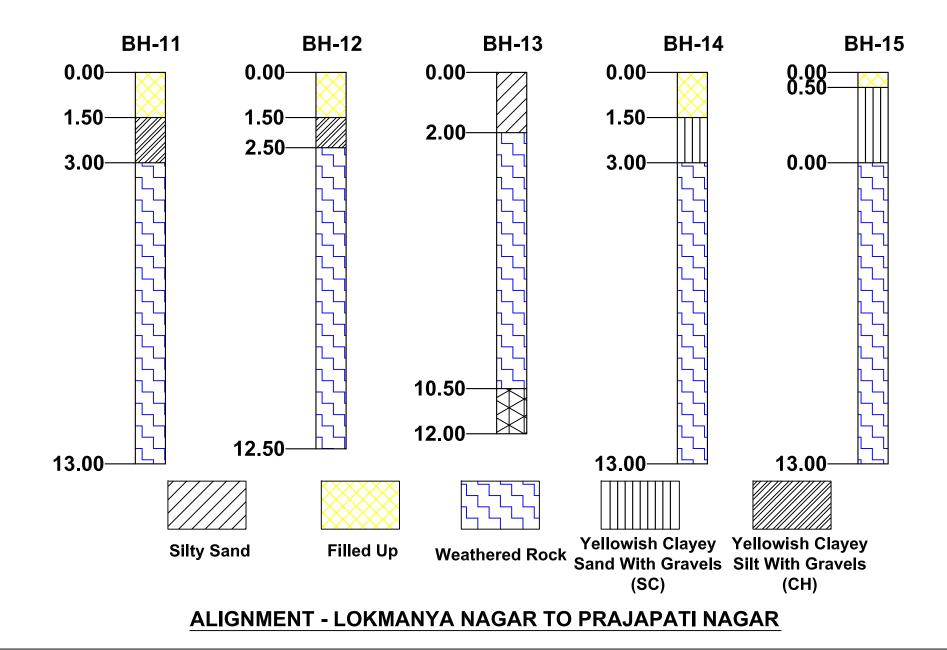


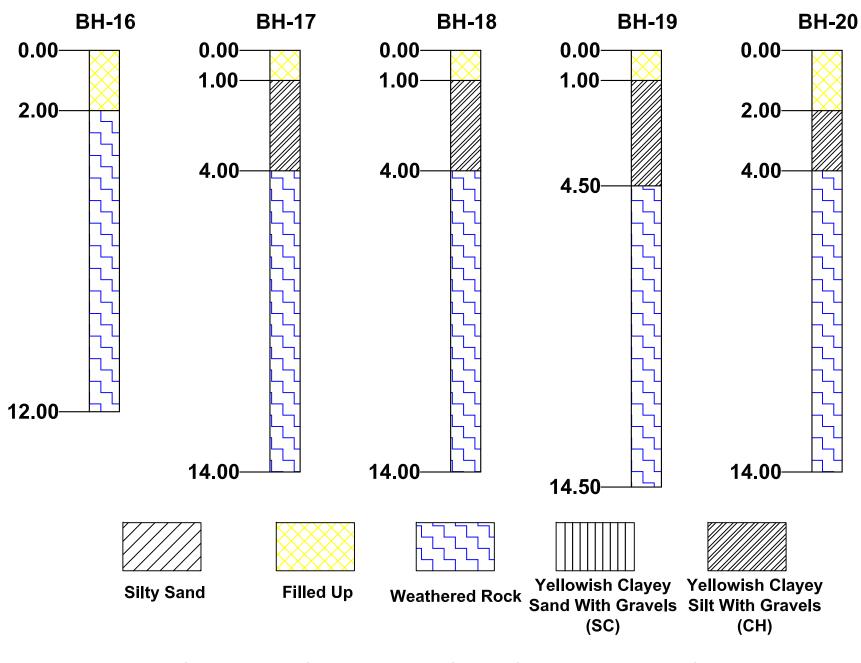

ALIGNMENT - AUTOMOTIVE SQUARE TO MIHAN

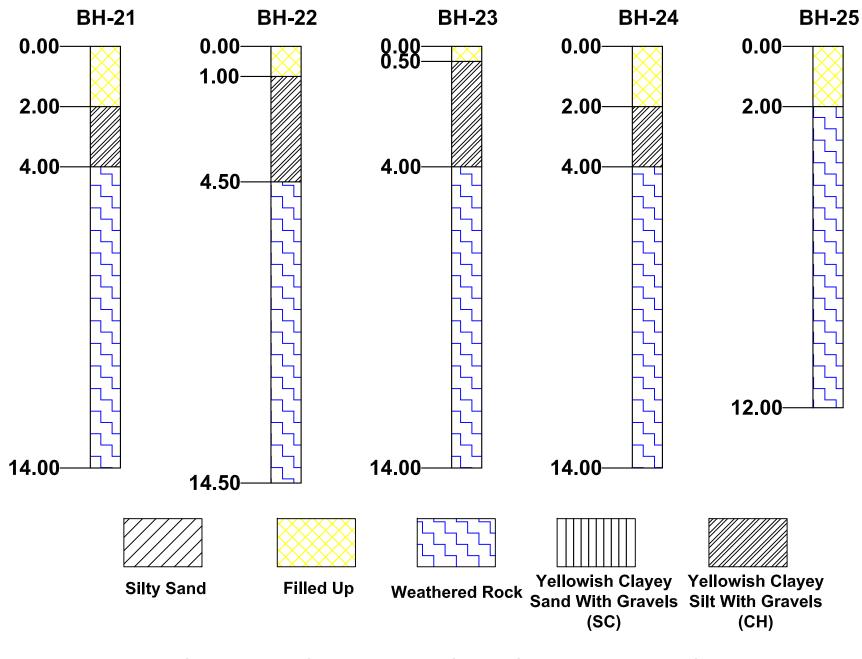


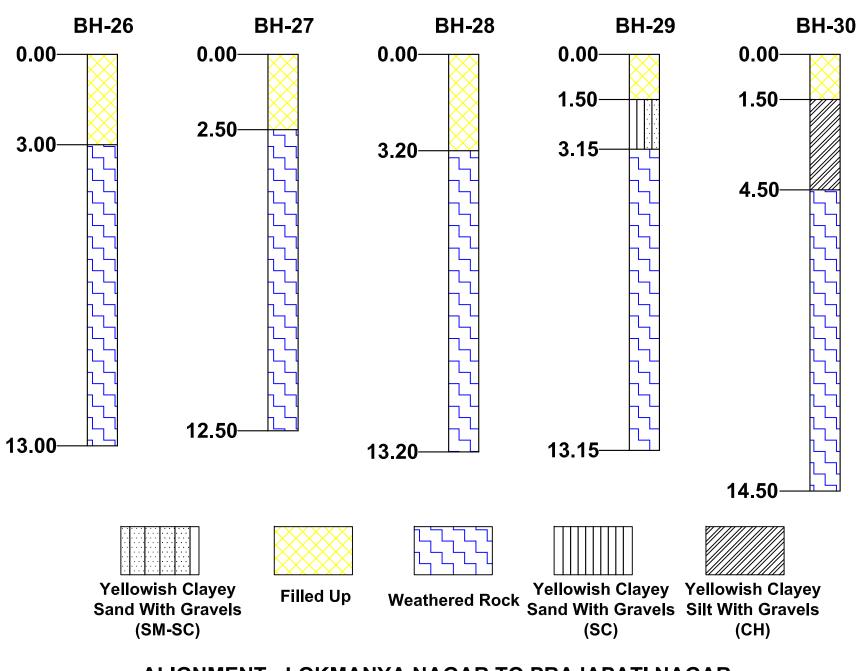


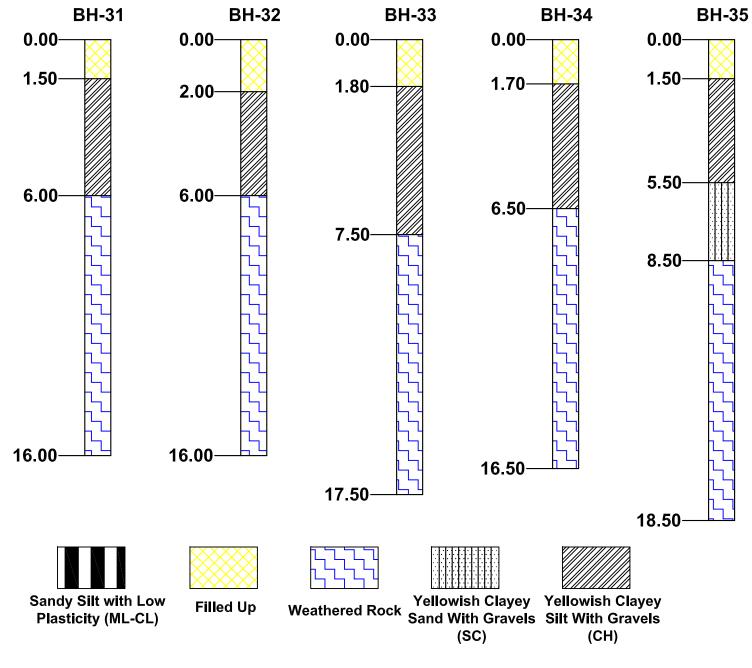

ALIGNMENT - AUTOMOTIVE SQUARE TO MIHAN

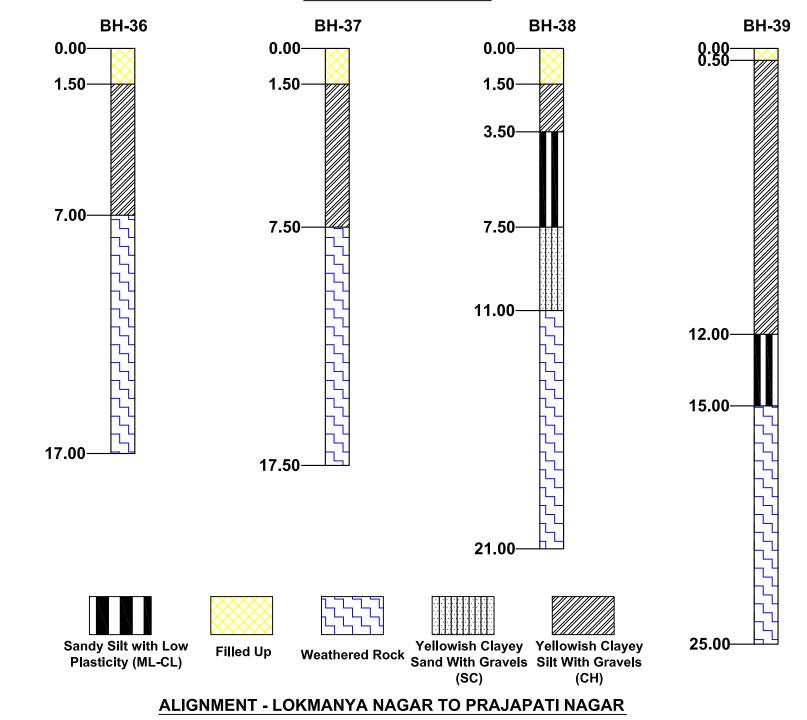





ALIGNMENT - AUTOMOTIVE SQUARE TO MIHAN







CHAPTER 6

STATION PLANNING

6.1 GENERAL

- 6.2 STATION PLANNING
- 6.3 PLANNING AND DESIGN CRITERIA FOR STATIONS
- 6.4 TYPICAL STATION
- 6.5 PASSENGER AMENITIES

TABLES

TABLE 6.1	STATION LOCATION CHARACTERISTICS

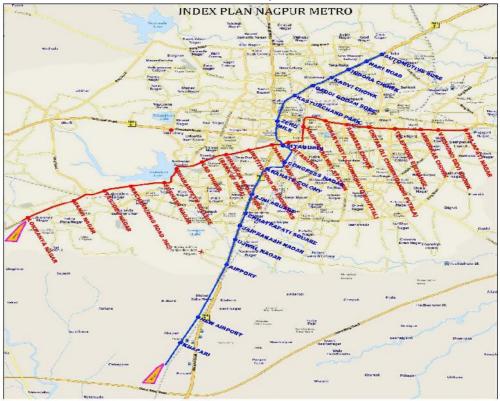
- TABLE 6.2
 STATION ACCOMMODATION
- TABLE 6.3 PASSENGER TRAFFIC AND REQUIREMENT OF AMENITIES IN STATIONS
- (PROJECTIONS FOR YEAR 2041)

FIGURES

FIGURES		
FIGURE 6.1	SITE CONDITIONS-	AUTOMOTIVE SQUARE
FIGURE 6.2	SITE CONDITIONS-	NARI ROAD
FIGURE 6.3	SITE CONDITIONS-	INDORA CHOWK
FIGURE 6.4	SITE CONDITIONS-	KADVI CHOWK
FIGURE 6.5	SITE CONDITIONS-	GADDI GODAM SQUARE
FIGURE 6.6	SITE CONDITIONS-	KASTURCHAND PARK
FIGURE 6.7	SITE CONDITIONS-	ZERO MILE
FIGURE 6.8	SITE CONDITIONS-	SITABURDI (INTERCHAGE)
FIGURE 6.9	SITE CONDITIONS-	CONGRESS NAGAR
FIGURE 6.10	SITE CONDITIONS-	RAHATE COLONY
FIGURE 6.11	SITE CONDITIONS-	AJNI SQUARE STATION
FIGURE 6.12	SITE CONDITIONS-	CHHATRAPATI SQUARE
FIGURE 6.13	SITE CONDITIONS-	JAIPRAKASH NAGAR
FIGURE 6.14	SITE CONDITIONS-	UJWAL NAGAR
FIGURE 6.15	SITE CONDITIONS-	AIRPORT
FIGURE 6.16	SITE CONDITIONS-	NEW AIRPORT
FIGURE 6.17	SITE CONDITIONS-	KHAPARI
FIGURE 6.18	SITE CONDITIONS-	PRAJAPATI NAGAR
FIGURE 6.19	SITE CONDITIONS-	VAISHNO DEVI CHOWK
FIGURE 6.20	SITE CONDITIONS-	AMBEDKAR CHOWK
FIGURE 6.21	SITE CONDITIONS-	TELEPHONE EXCHANGE
FIGURE 6.22	SITE CONDITIONS-	CHITTAR OLI CHOWK
FIGURE 6.23	SITE CONDITIONS-	AGARSEN CHOWK
FIGURE 6.24	SITE CONDITIONS-	DOSAR VAISYA CHOWK
FIGURE 6.25	SITE CONDITIONS-	NAGPUR RAILWAY STATION
FIGURE 6.26	SITE CONDITIONS-	SITABURDI (INTERCHANGE)
FIGURE 6.27	SITE CONDITIONS-	JHANSI RANI SQUARE
FIGURE 6.28	SITE CONDITIONS-	INSTITUTE OF ENGINEERS
FIGURE 6.29	SITE CONDITIONS-	SHANKAR NAGAR SQUARE
FIGURE (00		

FIGURE 6.33	SITE CONDITIONS-	RACHNA RING ROAD JN.
FIGURE 6.34	SITE CONDITIONS-	VASDEV NAGAR
FIGURE 6.35	SITE CONDITIONS-	BANSI NAGAR
FIGURE 6.36	SITE CONDITIONS-	LOKMANYA NAGAR

Chapter - 6


STATION PLANNING

6.1 General

The proposed metro for Nagpur consists of two corridors namely:

- 1. North-South Corridor : Automative Square to Khapri
- 2. East West Corridor : Prajapati Nagar to Lokmanya Nagar

The length of the proposed N-S corridor is 19.658km and that of E-W corridor is 18.557km from end to end. Along the proposed North-South corridor 17 stations have been planned. 19 stations have been planned along the East-West corridor. The locations of the station have been identified taking into consideration the constraints in land acquisition and congestion issues. Stations are proposed in such a way so as to attract maximum demand from the traffic nodal points.

6.2 Station Planning

6.2.1 Stations

Line – 1 starts at Automotive square an runs southwards on NH-7 through Nari Road, Indora chowk, Gaddi Godam Square, Kastrurchand Park, Zero Mile, Sitaburdi, Congress Nagar, Rahate colony, Ajni Sqr. Station, Chhatrapati Sqr. Station, Jaiprakash Nagar, Airport, New Airoort to Khapri Station. The Corridor is partly elevated and partly at grade.

Total Length of the corridor is 19.658 Km of which approximately 15.058 is elevated and 4.6 km is at Grade. There are 17 stations on this corridor of which 15 stations are elevated and 2 stations are at Grade. Sitaburdi Station is an Inter-change station.

Line -2 starts at Prajapati Nagar and runs through Vaishnodevi Chowk, Ambedkar Chowk, Telephone Exchange, Chittar Oli Chowk, Agarsen Chowk, Doser Vaisya Chowk, Nagpur Railway Station, Sitaburdi, Jhansi Rani Square, Institute of Engineers, Shankar Nagar Square, Lad chowk, Dharmpeth College, Subhash Nagar, Rachna (Ring road Junction), Vasudev Nagar, Bansi Nagar to Lomanya Nagar. The entire corridor is elevated.

The total length of the corridor is 18.557 kilometer. There are 19 stations on this corridor. All stations are elevated stations and Sitaburdi station is an Interchange Station.

6.2.2 Rail Levels and Alignment

In underground sections, the rail level is about 14.00 m below the ground level governed by a ground clearance of 2 m. and a station box of about 16 m depth. In the elevated section, rail level is generally about 13.00 m above ground in order to maintain a clearance of 5.50 m between the road and the station structure. In order to keep the land acquisition to minimum, alignment is planned generally in middle of the road and a twolevel station design has been proposed in both elevated and underground sections. Entry/exit structures to the proposed stations and traffic integration areas have been planned in the open space available.

6.2.3 Platforms

In the elevated section, stations have also been planned with side platforms to avoid the viaduct structure from flaring in and out at stations, which obstructs the road traffic below. Care has been taken to locate stations on straight alignment. However, in some stations, site constraints have become the deciding criteria and a curve of 1000 meter radius has been introduced.

6.2.4 Sequence of Stations

The sequence of stations along with their respective chainages, site and platform characteristics are presented in the Table 6.1:

Table 6.1STATION LOCATION CHARACTERISTICS

	Name of Station	Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment		
Line	-1 (North-South Corridor)	Automative	Automative Square to MIHAN Depot					
	Dead End	-408.2						
1.	AUTOMOTIVE SQRE	0.0	408.2	303.900	Side			
2.	NARIROAD	975.8	975.8	308.900	Side	Elevated		
3.	INDORA CHOWK	2139.7	1163.9	314.100	Side	Elevated		
4.	KADVI CHOWK	3181.2	1041.5	318.400	Side	Elevated		
5.	GADDI GODAM SQRE	4399.0	1217.8	323.200	Side	Elevated		
6.	KASTURCHAND PARK	5148.6	749.6	326.300	Side	Elevated		
7.	ZERO MILE	6175.5	1026.9	319.600	Side	Elevated		
8.	SITABURDI	6709.2	533.7	310.900	Side	Elevated		
9.	CONGRESS NAGAR	7897.2	1188.0	317.900	Side	Elevated		
10.	RAHATE COLONY	8682.6	785.4	321.500	Side	Elevated		
11.	AJNI SQUARE	10104.7	1422.1	315.300	Side	Elevated		
12.	CHHATRAPATI SQUARE	11146.3	1041.6	319.500	Side	Elevated		
13.	JAIPRAKASH NAGAR	11811.5	665.2	320.000	Side	Elevated		
14.	UJWAL NAGAR	12846.6	1035.1	311.000	Side	Elevated		
15.	AIRPORT	13784.9	938.3	313.300	Side	Elevated		
16.	NEW AIRPORT	16184.4	2399.5	299.000	Side	At-Grade		
17.	KHAPARI	18460.6	2276.2	308.700	Side	At-Grade		
	Dead End	19250.0	789.4					

	Name of Station	Chainage (in m)	Distance from previous station (in m)	Rail level (in m)	Platform type	Alignment
Line	-2 (East-West Corridor) F	Prajapati Nag				
	Dead End	-392.0				
1	Prajapati Nagar	0.0	392.0	301.0	Side	Elevated
2	Vaishno Devi Chowk	1229.3	1229.3	305.3	Side	Elevated
3	Ambedkar Chowk	1947.9	718.6	308.3	Side	Elevated
4	Telephone Exchange	3137.4	1189.5	311.6	Side	Elevated
5	Chittar Oli Chowk	3950.2	812.8	311.5	Side	Elevated
6	Agarsen Chowk	4759.8	809.6	319.5	Side	Elevated
7	Dosar Vaisya Chowk	5590.4	830.6	321.9	Side	Elevated
8	Nagpur Railway station	6464.4	874.0	319.7	Side	Elevated
9	Sitaburdi (Interchange)	7707.7	1243.3	320.1	Side	Elevated
10	Jhansi Rani Square	8354.0	646.3	313.9	Side	Elevated
11	Institute Of Engineers	9117.2	763.2	315.4	Side	Elevated
12	Shankar Nagar Square	10074.9	957.7	316.9	Side	Elevated
13	Lad Chowk	10873.1	798.2	319.1	Side	Elevated
14	Dharmpeth College	12020.7	1147.6	329.5	Side	Elevated
15	Subhash Nagar	12947.1	926.4	336.0	Side	Elevated
16	Rachna Ring Road Jn.	14201.1	1254.0	338.8	Side	Elevated
17	Vasdev Nagar	15173.9	972.8	345.2	Side	Elevated
18	Bansi Nagar	16131.6	957.7	336.3	Side	Elevated
19	Lokmanya Nagar	17792.6	1661.0	330.4	Side	Elevated
	Dead end	18165.0	372.4			

6.3 Planning and Design Criteria for Stations

- 1. The stations can be divided into public and non-public areas (the areas where access is restricted). The public areas can be further subdivided into paid and unpaid areas.
- 2. The platform level has adequate assembly space for passengers for both normal operating conditions and a recognized abnormal scenario.

- 3. The platform level at elevated stations is determined by a critical clearance of 5.5-m under the concourse above the road intersection, allowing 3.5-m for the concourse height, about 1-m for concourse floor and 2.2-m for structure of tracks above the concourse. Further, the platforms are 1.09-m above the tracks. This would make the rail level in an elevated situation at least 13.4 m above ground.
- 4. The concourse contains automatic fare collection system in a manner that divides the concourse into distinct areas. The 'unpaid area' is where passengers gain access to the system, obtain travel information and purchase tickets. On passing through the ticket gates, the passenger enters the 'paid area', which includes access to the platforms.
- 5. The arrangement of the concourse is assessed on a station-by-station basis and is determined by site constraints and passenger access requirements. However, it is planned in such a way that maximum surveillance can be achieved by the ticket hall supervisor over ticket machines, automatic fare collection (AFC) gates, stairs and escalators. Ticket machines and AFC gates are positioned to minimise cross flows of passengers and provide adequate circulation space.
- 6. Sufficient space for queuing and passenger flow has been allowed at the ticketing gates.
- 7. Station entrances are located with particular reference to passenger catchment points and physical site constraints within the right-of-way allocated to the MRTS.
- 8. Office accommodation, operational areas and plant room space is required in the non-public areas at each station. The functions of such areas are given below in Table 6.2
- 10. The DG set, bore well pump houses and ground tank would be located generally in one area on ground.
- 11. The system is being designed to maximize its attraction to potential passengers and the following criteria have been observed:
 - Minimum distance of travel to and from the platform and between platforms for transfer between lines.
 - Adequate capacity for passenger movements.
 - Convenience, including good signage relating to circulation and orientation.
 - Safety and security, including a high level of protection against accidents.
- 12. Following requirements have been taken into account:
 - Minimum capital cost is incurred consistent with maximising passenger attraction.
 - Minimum operating costs are incurred consistent with maintaining efficiency and the safety of passengers.

- Flexibility of operation including the ability to adapt to different traffic conditions changes in fare collection methods and provision for the continuity of operation during any extended maintenance, epair period, etc.
- Provision of good visibility of platforms, fare collection zones and other areas, thus aiding the supervision of operations and monitoring of efficiency and safety.
- Provision of display of passenger information and advertising.
- 13. The numbers and sizes of staircases/escalators are determined by checking the capacity against AM and PM peak flow rates for both normal and emergency conditions such as delayed train service, fire etc.
- 14. In order to transfer passengers efficiently from street to platforms and vice versa, station planning has been based on established principles of pedestrian flow and arranged to minimise unnecessary walking distances and cross-flows between incoming and outgoing passengers.
- 15. Passenger handling facilities comprise of stairs/escalators, lifts and ticket gates required to process the peak traffic from street to platform and vice-versa (these facilities must also enable evacuation of the station under emergency conditions, within a set safe time limit).

6.4 Typical Station

6.4.1 Typical Elevated Station

The station is generally located on the road median. Total length of the station is ~140m. All the stations are two-level stations. The concourse is planned along the whole length of the platform with staircases leading from either side of the road. The maximum width of the station at concourse is ~22m. Passenger facilities like ticketing, information, etc as well as operational areas are provided at the concourse level.

Typically, the concourse is divided into public and non-public zones. The non-public zone or the restricted zone contains station operational areas such as Station Control Room, Station Master's Office, Waiting Room, Meeting Room, UPS & Battery Room, Signalling Room, Train Crew Room & Supervisor's Office, Security Room, Station Store Room, Staff Toilets, etc. The public zone is further divided into paid and unpaid areas. Auxiliary Service station is provided on the ground under the entry/ exit structure.

Since the station is in the middle of the road, minimum vertical clearance of 5.5-m has been provided under the concourse. Platforms are at a level of about 14.5m from the road. To reduce physical and visual impact of the elevated station, stations have been designed as cantilevered structures with single column located at the central verge of the road.

With respect to its spatial quality, an elevated Metro structure makes a great impact on the viewer as compared to an At-grade station. The positive dimension of this impact

JULY 2013

has been accentuated to enhance the acceptability of an elevated station and the above ground section of tracks. Structures that afford maximum transparency and are light looking have been envisaged. A slim and ultra-modern concrete form is proposed, as they would look both compatible and modern high-rise environment as well as the lesser-built, low-rise developments along some parts of the corridor.

Platform roofs, that can invariably make a structure look heavy, have been proposed to be of steel frame with aluminium cladding to achieve a light look. Platforms would be protected from the heat and rains by providing an overhang of the roof and sidewalls are avoided, thereby enhancing the transparent character of the station building. In order to allow unhindered traffic movement below the stations, the station structure is supported on a single column, which lies unobtrusively on the central verge.

6.4.2 Typical At-Grade Station

6.4.3 Typical Interchange Station

The Sitaburdi Station is located at the intersection of the Line-1 and Line-2 of the Nagpur Metro System. The station has an interchange type configuration, and many passengers will change from one line to the other. This interchange will provide great utility and flexibility for the system as a whole, and it will decrease the time required for travel within the city.

The easternmost Line-1 Station is Prajapati Nagar, and the line extends westward through Sitaburdi to Lokmanya Nagar. Line-2 has its northernmost station at Automotive Square, and it connects locations toward the south through the Zero Mile, Sitaburdi, Ajn Sqr., the Airport, and the finally Khapri Station.

Passengers traveling on both lines have the option to change their direction of travel at Sitaburdi, thus requiring larger concourses and platforms in the station for pedestrian movements. In addition to providing interchange connections between Line-1 and Line-2, the station accommodates a busy area of the city next to the Stadium, which will generate large numbers of passengers during special events.

The station is composed of a Concourse Level 8.00 meters above the ground. Above the Concourse is the Line-1 Platform at an elevation of 14.5 meters, and Line-2 Platform passes over Line-1 at the height of 23.9 meters.

Passengers entering Sitaburdi Station may go directly to either Line-1 or Line-2 platform from which they may board a train in any of four directions.

Passengers entering the station on a train on either Line-1 or Line-2 may transfer between lines in a direct manner by means of convenient escalators and stairs that lead to trains in the other three directions.

7/48

JULY 2013

Table 6.2STATION ACCOMMODATION

	For Elevated and at grade Stations							
1.	Station Control Room	2. Cleaner's Room						
3.	Station Master's Office	4. Security Room						
5.	Information & Enquiries	6. First Aid Room						
7.	Ticket Office	8. Miscellaneous Operations Room						
9.	Ticket Hall Supervisor & Excess Fare Collection (Passenger Office)	10. Platform Supervisor's Booth						
11.	Cash and Ticket Room	12. Auxillary Substation / DG Room						
13.	Staff Area	14. Fire Tank and Pump Room						
15.	Staff Toilets	16. Commercial Outlets and Kiosks						
17.	Station Store Room	18. UPS and Battery Room						
19.	Refuse Store	20. Signaling / Communication Room						

6.5 **Passenger Amenities**

Passenger amenities such as ticketing counters/automatic ticket vending machines, ticketing gate, etc. are provided in the concourse. Uniform numbers of these facilities have been provided for system wide uniformity, although the requirement of the facilities actually varies from station to station. The same applies to provision of platform widths and staircase/escalators. Maximum capacity required at any station by the year 2031 for emergency operation has been adopted for all stations.

For this purpose, *peak minute traffic* is assumed to be 2% of the *peak hour traffic*. For checking the adequacy of platform area, stair widths and requirement additional of emergency evacuation stairs, a maximum accumulation of passengers in the station has been considered to be comprising waiting passengers at the platform (including two missed headways) and section load expected to be evacuated at the station in case of an emergency.

6.5.1 Concourse

Concourse forms the interface between street and platforms. In elevated stations, this is contained along the full length of the station. This is where all the passenger amenities are provided. The concourse contains automatic fare collection system in a manner that divides the concourse into distinct *paid* and *unpaid* areas. The *'unpaid area'* is where passengers gain access to the system, obtain travel information and purchase tickets. On passing through the ticket gates, the passenger enters the *'paid area'*, *which* includes access to the platforms.

The concourse is planned in such a way that maximum surveillance can be achieved by the ticket hall supervisor over ticket machines, automatic fare collection (AFC) gates, stairs and escalators. Ticket machines and AFC gates are positioned to minimise cross flows of passengers and provide adequate circulation space. Sufficient space for queuing and passenger flow has been allowed in front of the AFCs.

6.5.2 Ticketing Gates

Ticketing gates' requirement has been calculated taking the gate capacity as 45 persons per minute per gate. Passenger forecast for the horizon year 2031 has been used to compute the maximum design capacity. At least two ticketing gates shall be provided at any station even if the design requirement is satisfied with only one gate. Uniform space has been provided in all stations where gates can be installed as and when required.

6.5.3 Ticket Counters and Ticket Issuing Machines (TIMs)

It is proposed to deploy manual ticket issuing in the beginning of the operation of the line. At a later stage, automatic TIMS would be used for which space provision has been made in the concourse. At present, ticket counters would be provided, which would be replaced with TIMS in future. Capacity of manual ticket vending counters is taken to be 10 passengers per minute and it is assumed that only 40% of the commuters would purchase tickets at the stations while performing the journey. The rest are expected to buy prepaid tickets or prepaid card, etc. Accordingly, the requirement of ticket counters has been calculated and the same provided for in the plans.

6.5.4 Platforms

A uniform platform width of 13 m wide is proposed for the island stations. In elevated stations, 3.5m wide side platforms have been proposed. In Interchange station the platform width is kept as 5.0m in order to cater to a large number of interchanging passengers. These platform widths also have been checked for holding capacity of the platform for worst-case scenario.

6.5.5 Stairs, Escalators and Lifts

Provisions have been made for escalators in the paid area i.e. from concourse to platforms. On each platform, one escalator has been proposed. In addition, two staircases with a combined width of 6 m are provided on each platform connecting to the concourse. These stairs and escalator together provide an escape capacity adequate to evacuate maximum accumulated passengers in emergency from platforms to concourse in 5.5 minutes. Lifts have been provided one each on either platform, to provide access for elderly and disabled. Since the rise to road from the concourse is about 8m, it is proposed to provide escalators and lifts in addition to stairs for vertical movement of passengers from street to concourse.

6.5.6 Fire Fighting Measures

Fire fighting provisions for Elevated & at Grade metro stations is in accordance with the National Building Code of India 1983 (part IV, Fire protection) amendment no. 3 under Fire protection Annexure II.

National Building Code (clause 6.4.8). Fire protection and fire fighting system for metro stations stipulates: -

- 1) Wet riser system
 - a. Main and diesel pump of 1800 l/min capacity to support 3 to 4 hydrant at a time [station building is split into two halves. It is presumed that fire will not break in the two parts simultaneously. There are 3 hydrants in one part. Therefore pump capacity as above are proposed
 - b. Jockey pump 180 l/min shall also have DG back up.
 - 2) Internal Hydrant

The internal hydrant is provided with 2 nos RRL hose pipes of 38 mm Ø with 63 mm standard instantaneous coupling along with associated branch pipe and cabinet and a first aid hose reel of 25 mm Ø length 45m fitted with 6.5 mm nozzle. One hydrant each at ground level, passage level and platform level in each half of the station building and so located that every part of station is within 30 m radius.

- 3) Sprinklers are provided in the property development area only. Additional sprinkler pump is not provided as these are not required being the integral part of the station. The two pumps already provided will take care of sprinkler flow requirements.
- Detectors are provided in the operational areas only, and above false ceiling if the gap is > 750 mm.
- 5) One manual call box at each level in each half of the station building is provided.
- 6) The HT panels, LT panels, main LT distribution board and essential power panels shall be provided with linear heat sensing tubes with CO₂ cylinder.
- 7) A two way fire brigade inlet at ground level on each rising main for hydrants is provided.
- 8) Draw off connection is provided on the fine water tank for fire brigade.
- 9) Water tank of 50,000 liters capacity if planned since commercial development is restricted to 250 Sqm.
- 10) Portable fire extinguishers (CO₂) a set of two is provided in each of the equipment room.

Summary of passenger amenities required and proposed at stations based on projected traffic for the year 2025 is given in the Table 6.3

Table 6.3PASSENGER TRAFFIC AND REQUIREMENT OF AMENITIES IN STATIONS(Projections for Year 2041)

Station	Peak Hour Peak Direction traffic	Ticketing Gates required On each side	TOM Required	Stairs Width (m) On Each Platform	Escal Provid Each S	led At	Provision of Lifts At Each Station
	Dir	E-R-E		Sta On	G-C	C-P	* G - P
1. Automotive Square	5274	2-2-2	2	4.80	2	2	2
2. Nari Road	7815	2-2-2	2	4.80	2	2	2
3. Indora Chowk	9833	2 - 2- 2	2	4.80	2	2	2
4. Kadvi Chowk	11719	2 - 2 - 2	2	4.80	2	2	2
5. Gaddi Godam Square	11743	2 - 2 - 2	2	4.80	2	2	2
6. Kasturchand Park	13724	2-2-2	2	4.80	2	2	2
7. Zero Mile	14572	2-2-2	2	4.80	2	2	2
8. Sitaburdi	15729	4-4-4	3	4.80	2	8	2
9. Congress Nagar	8477	4-4-4	4	4.80	2	2	2
10. Rahate Colony	7149	2-2-2	2	4.80	2	2	2
11. NEERI Station	6185	2-2-2	2	4.80	2	2	2
12. Dev Nagar	5608	2-2-2	2	4.80	2	2	2
13. Sehkar Nagar	5179	2 - 2- 2	2	4.80	2	2	2
14. Old Airport	4624	2 - 2- 2	2	4.80	2	2	2
15. New Airport	4302	2 - 2- 2	2	6.00	2	2	2
16. MIHAN City	3660	2 - 2- 2	2	4.80	2	2	2
17. Khapri Station		2 – 2 - 2	2	4.80	2	2	2

Line-1 N-S corridor (Automotive Square to Khapri Station)

Note: G- Ground/ street level,

C- Passage level,

P- Platform

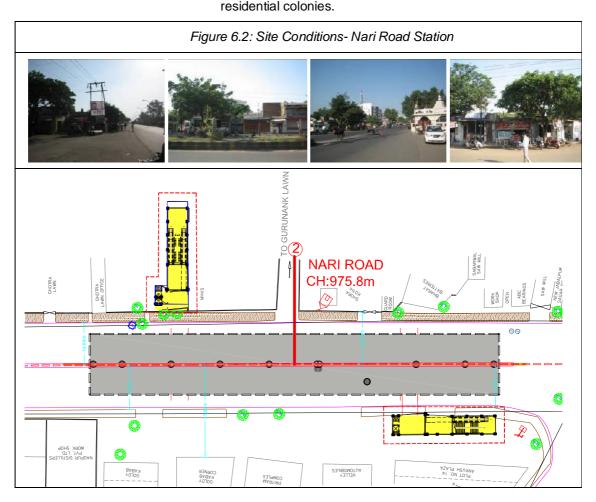
* - Interchange station

11/48

Line-2 E-W corridor (Prajapati Nagar to Lokmanya Nagar)

Station	Peak Hour Peak direction traffic	Ticketing Gates required On each side	TOM Required.	Stairs Width (m) On Each latform	Escalators Provided At Each Station		Provision of Lifts At Each Station
	Peak	E-R-E	Re	Stairs On Ea	G-C	C-P	* G - P
1. Prajapati Nagar	659	2 - 2- 2	2	6.40	2	2	2
2. Vaishnodevi Chowk	1250	2 - 2- 2	2	4.80	2	2	2
3. Ambedkar Chowk	1925	2 - 2- 2	2	4.80	2	2	2
4. Telephone Exchange	4601	2 - 2- 2	2	4.80	2	2	2
5. Chittar oli Chowk	6330	2 - 2- 2	2	4.80	2	2	2
6. Agarsen Chowk	7386	2 - 2- 2	2	4.80	2	2	2
7. Dosar Vaisyan Chowk	8297	2 - 2- 2	2	4.80	2	2	2
8. Nagpur Railway Station	11882	2 - 2- 2	6	4.80	2	2	2
9. Sitaburdi	10064	4-4-4	7	4.80	2	2	2
10. Jhansi Rani Square	6640	4-4-4	3	8.00	2	2	2
11. Institute of Engineers	11528	2 - 2- 2	3	4.80	2	2	2
12. Shankar Nagar Square	9314	2 - 2- 2	2	4.80	2	2	2
13. Lad Chowk	8588	2 - 2- 2	2	4.80	2	2	2
14 Dharampeth College	6297	2 - 2- 2	2	4.80	2	2	2
15 Subhash Nagar	5871	2 - 2- 2	2	4.80	2	2	2
16 Rachna (Ring Road Jn.)	5341	2 - 2- 2	2	4.80	2	2	2
17 Vasdev Nagar	4136	2 - 2- 2	2	4.80	2	2	2
18 Bansi Nagar	3346	2 - 2- 2	2	4.80	2	2	2
19 Lokmanya Nagar		2 - 2- 2	2	4.80	2	2	2

Line -1 (N-S Corridor)


1. Automotive square

Chainage	:	0.00
Inter Station Distance	:	First Station
Rail Level	:	13.11m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on Kamptee road.
Catchment Area		The main source of passengers to this station is the residents of surrounding residential colonies and the industrial areas in.

Line -1 (N-S Corridor)

2. Nari Road		
Chainage	:	975.80m
Inter Station Distance	:	975.80M
Rail Level	:	12.92 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on Kamptee road.
Catchment Area		The main source of passengers to this station is the residents of Shinde Nagar, PWS College, and other surrounding residential colonies

Line -1 (N-S Corridor)

3. Indora Chowk		
Chainage	:	2139.70m
Inter Station Distance	:	1063.90 m
Rail Level	:	12.63 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on Kamptee road.
Catchment Area		The main source of passengers to this station is the residents of Indora Nagar, Jharipatka, Kamal Square &

JULY 2013

15/48

Line -1 (N-S Corridor)

4. Kadvi Chowk		
Chainage	:	3181.20 m
Inter Station Distance	:	1041.40 m
Rail Level	:	13.67 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44.
Catchment Area		The main source of passengers to this station is the residents of Gautam Nagar, Mohan Nagar, St. Michael School and the

JULY 2013

Line -1 (N-S Corridor)

5. Gaddi Godam Square	
Chainage	: 4399.00 m
Inter Station Distance	: 1217.90 m
Rail Level	: 12.96 m
Station type	: Elevated
Entry / Exits	: On both sides of road
Location	The station is proposed on NH-44.
Catchment Area	The main source of passengers to this station is the residents of Gautam Nagar, Sadar, and residents of surrounding areas .

Line -1 (N-S Corridor)

6. Kasturchand Park

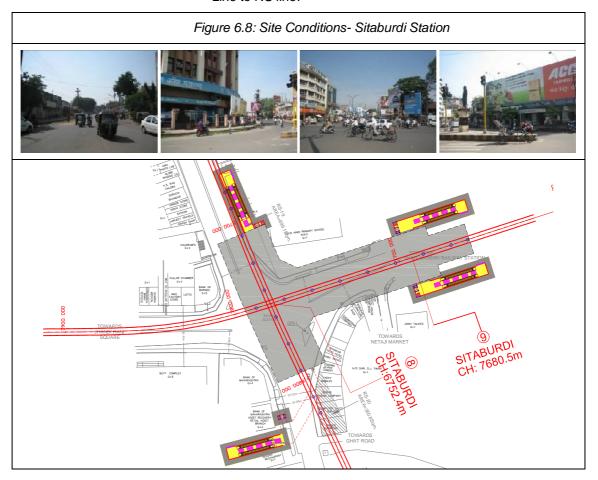
Chainage	:	5148.60 m
Inter Station Distance	:	749.60 m
Rail Level	:	12.99 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44.
Catchment Area		The main source of passengers to this station is the residents of surrounding areas and people working in NMC office, Reserve Bank Of India, and other Government Offices.

Figure 6.6: Site Conditions- Kasturchand Park Station

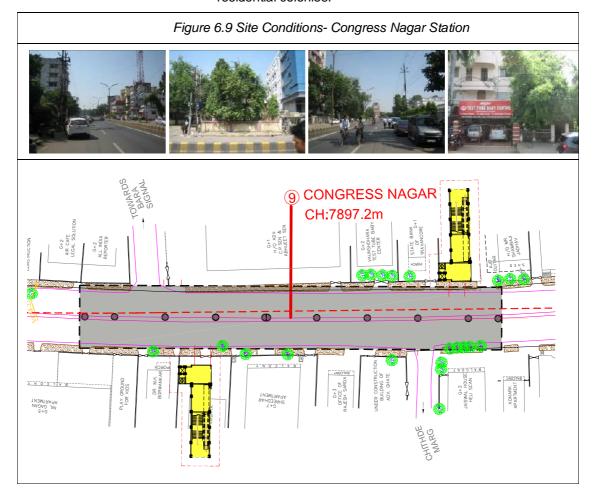
Line -1 (N-S Corridor)

7. Zero Mile

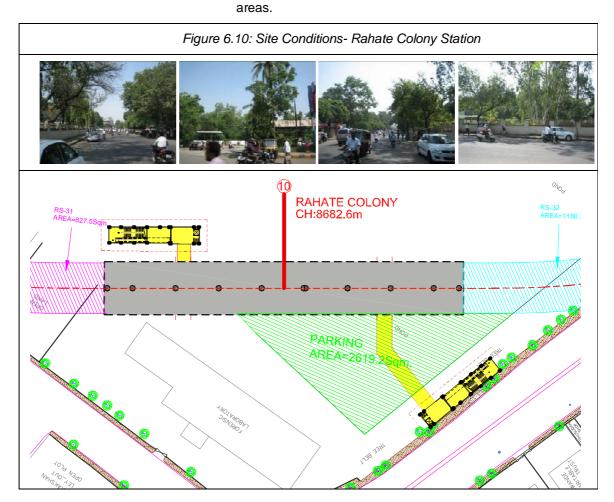
Chainage	:	6175.50 m
Inter Station Distance	:	1026.90 m
Rail Level	:	13.30 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44.
Catchment Area		The main source of passengers to this station is the residents of surrounding areas and people working in NMC office, Reserve Bank Of India, and other Government Offices.


JULY 2013

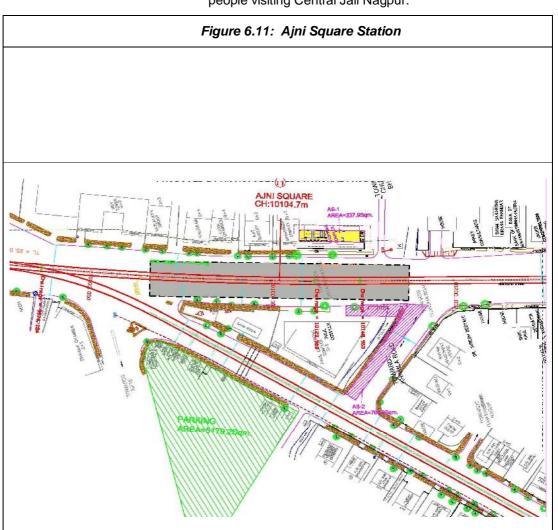
Line -1 (N-S Corridor)


8.	Sitaburdi

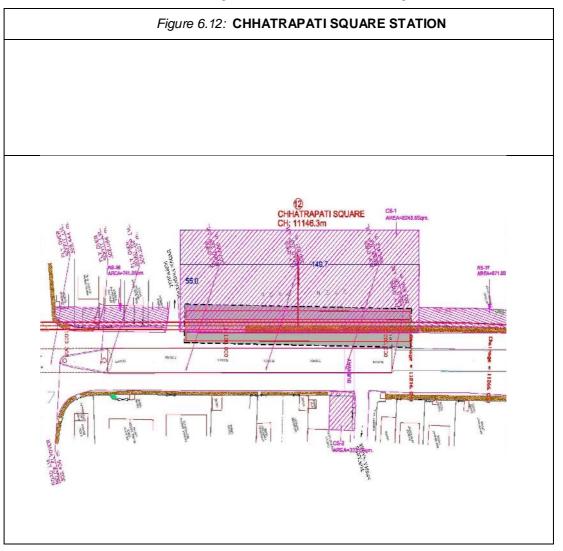
Chainage	:	6815.80m
Inter Station Distance	:	533.70m
Rail Level	:	12.64M
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on the crossing of NH-44 and State Highway No. 255.
Catchment Area		The main source of passengers to this station is the residents of surrounding Commercial and residential areas, People visiting Stadium during special events, interchanging from EW Line to NS line.



9. Congress Nagar		
Chainage	:	7897.20 m
Inter Station Distance	:	1188.00 m
Rail Level	:	12.88 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44.
Catchment Area		The main source of passengers to this station is the residents of Congress Nagar and the residents of surrounding residential colonies.

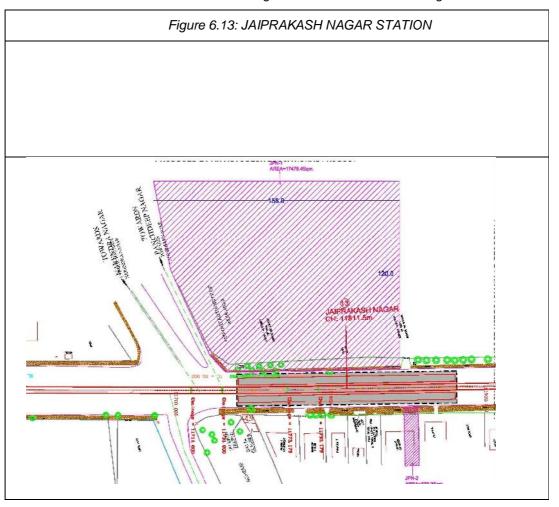


10. Rahate Colony		
Chainage	:	8682.60 m
Inter Station Distance	:	785.40 m
Rail Level	:	13.80 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44.
Catchment Area		The main source of passengers to this station is the residents of Rahate Colony and the residents of surrounding residential


11. Ajni Square	
Chainage	: 10104.7 m
Inter Station Distance	: 1422.1 m
Rail Level	: 13.084 m
Station type	: Elevated
Entry / Exits	: On both sides of road
Location	: The station is proposed on NH-44 near NEERI institute and Central Jail, Nagpur.
Catchment Area	The main source of passengers to this station is the residents & Students of NEERI, Modern School, and people visiting Central Jail Nagpur.

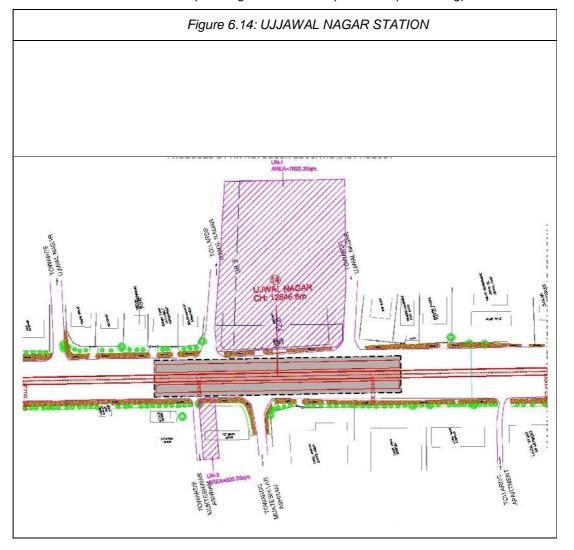
12. CHHATRAPATI SQUARE

Chainage	:	11146.3 m
Inter Station Distance	:	1041.6 m
Rail Level	:	14.900 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44
Catchment Area		The main source of passengers to this station is the residents of Vivekanand Nagar, Dev Nagar, Sawarkar Nagar and residents of surrounding areas.



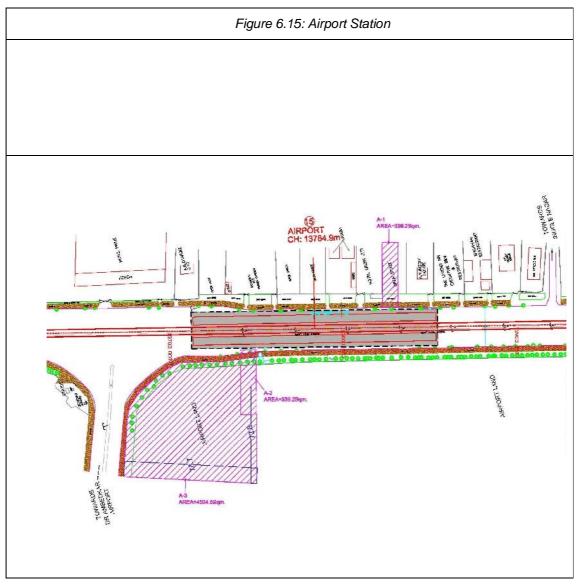
Line -1 (N-S Corridor)

13. JAIPRAKASH NAGAR


Chainage	:	11811.5 m
Inter Station Distance	:	665.2 m
Rail Level	:	12.877m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	The station is proposed on NH-44
Catchment Area		The main source of passengers to this station is the residents of Sehkar Nagar and workers of surrounding Industrial units.

14. UJWAL NAGAR

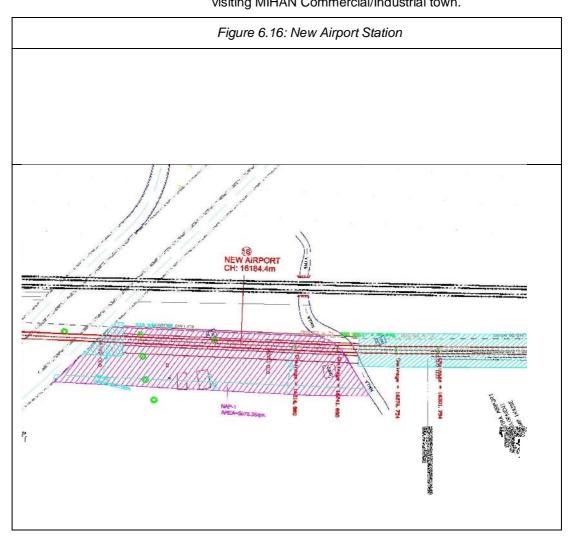
Chainage	:	12846.6 m
Inter Station Distance	:	1035.1 m
Rail Level	:	12.558 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road
Location	:	Fore-court of Nagpur Airport.
Catchment Area		The main source of passengers to this station is the passengers and staff of present Airport of Nagpur.



DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

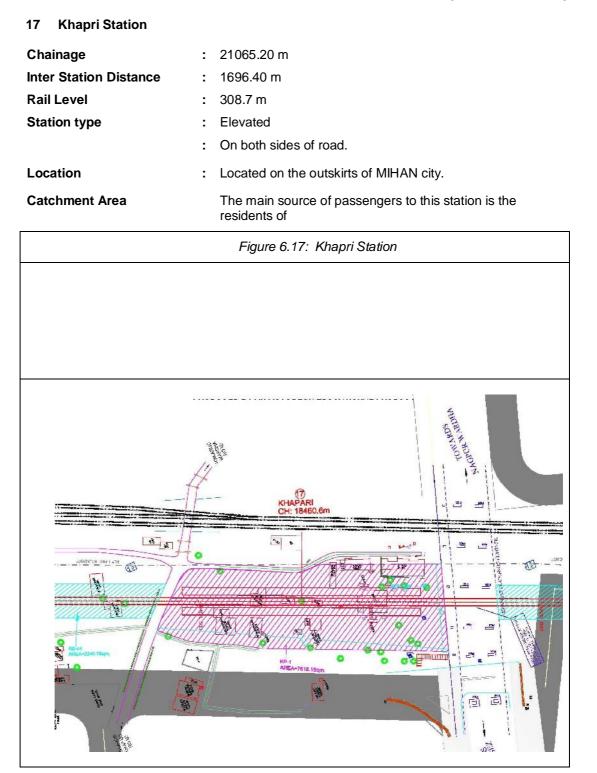
Line -1 (N-S Corridor)

15. Airport Chainage	:	13784.9 m
Inter Station Distance	:	938.3 m
Rail Level	:	13.480 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road.
Location	:	New Airport of Nagpur.
Catchment Area		The main source of passengers to this station is the Passengers and staff of the proposed New Airport of Nagpur.


JULY 2013

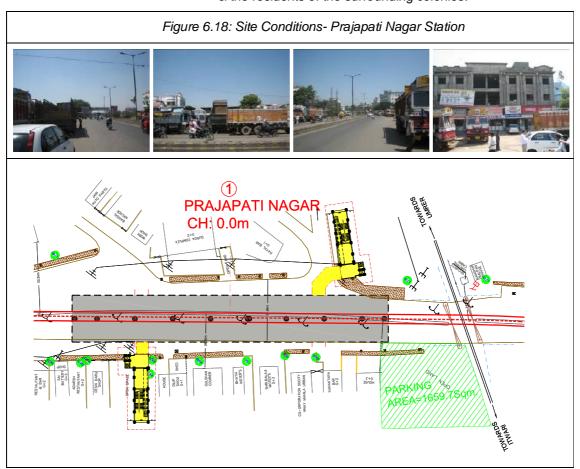
Line -1 (N-S Corridor)

16. **NEW AIRPORT**


Chainage	:	16184.4 m
Inter Station Distance	:	2399.5 m
Rail Level	:	2.478 m
Station type	:	Elevated
Entry / Exits		On both sides of the road.
Location	:	Central Avenue of MIHAN City.
Catchment Area		The main source of passengers to this station is the residents of Newly developing MIHAN City and the people visiting MIHAN Commercial/Industrial town.

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT JULY 2013

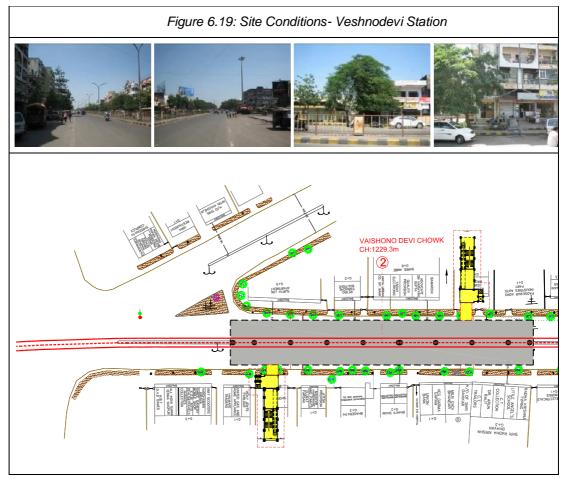
Line -1 (N-S Corridor)


JULY 2013

Line -2 (E-W Corridor)

1. Prajapati Nagar

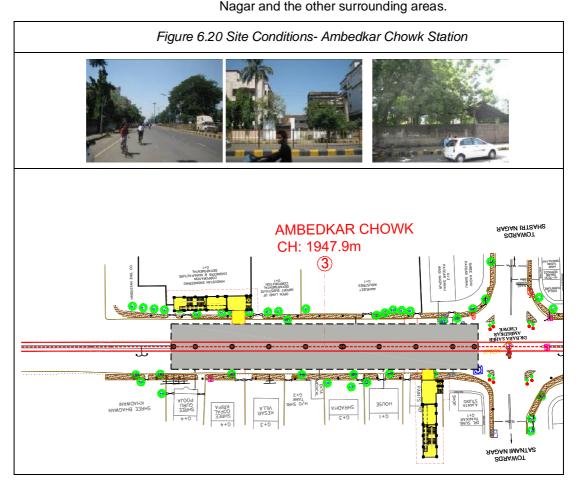
Chainage	:	0.00 m
Inter Station Distance		392.00m
Rail Level	:	12.84 m
Station type	:	Elevated
Entry / Exits	:	On both sides of the road.
Location	:	The station is located on NH-6 across the railway line near Old Pardi Naka.
Catchment Area		The station is proposed in the residential area of Ramanuj Nagar, HB Town, Chandar Nagar, Ram Nagar, Surya Nagar & the residents of the surrounding colonies.



Line -2 (E-W Corridor)

2.	Veshnodevi Chowk
<u></u>	

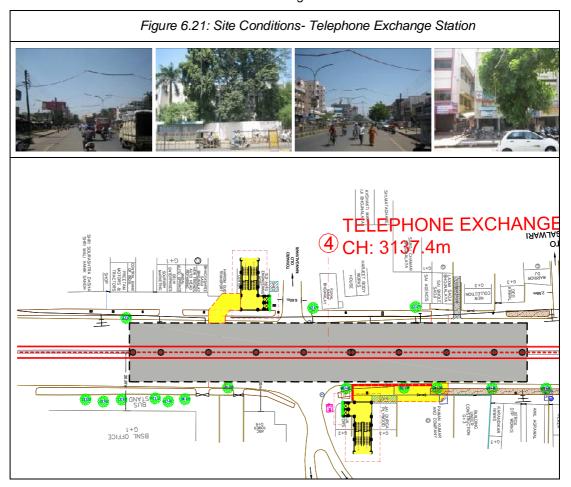
Chainage	:	1229.30 m
Inter Station Distance	:	1229.30 m
Rail Level	:	12.52 m
Station type	:	Elevated
Entry / Exits	:	On both sides of the road.
Location	:	The station is located on NH-6 on Vaishnodevi Chowk near old Bhandra road and Mahal Road.
Catchment Area		Main source of passengers to this station is residents of the Hiwari Nagar, Surrounding residential areas and Industrial areas.



Line -2 (E-W Corridor)

3. Ambedkar Chowk

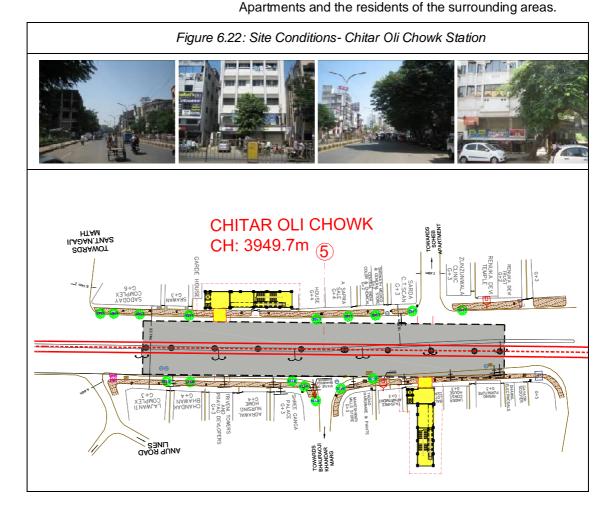
Chainage	:	1947.90 m
Inter Station Distance	:	718.60 m
Rail Level	:	12.82 m
Station type	:	Elevated
Entry / Exits	:	On both sides of the road.
Location	:	The station is located on NH-6 near Dr. Bhimrao Ambedkar Chowk.
Catchment Area		The main source of passengers to this station is the residents of the Satnami Nagar, Shastri Nagar, Hiwari Nagar and the other surrounding areas



Line -2 (E-W Corridor)

4. Telephone exchange	4.	Tele	phone	exchange
-----------------------	----	------	-------	----------

Chainage	:	3137.40 m
Inter Station Distance	:	1189.50 m
Rail Level	:	12.64 m
Station type	:	Elevated
Entry / Exits	;	On both sides of road.
Location	:	The station is located on NH-6 opposite Telephone exchange, Nagpur.
Catchment Area		The main source of passengers to this station is the residents of Mangal Wari, Strangi Pura, Jagnade Square, and surrounding residential & commercial areas.



Line -2 (E-W Corridor)

5. Chitar Oli Chowk (Gandhi Putala)

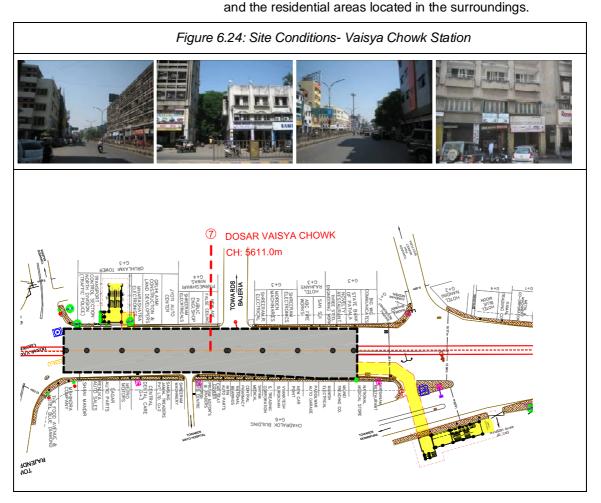
Chainage	:	3949.70 m
Inter Station Distance	:	812.30 m
Rail Level	:	12.55 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road.
Location	:	The station is located on NH-6 near Chitar Oli Chowk.
Catchment Area		The main source of passengers to this station is the residents of Itawari Market, Bhadkas Square, nearby

Line -2 (E-W Corridor)

6.	Agrasen	Chowk
----	---------	-------

Chainage	:	4759.20 m
Inter Station Distance	:	809.50 m
Rail Level	:	12.62 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road.
Location	:	The station is located on NH-6 near Agarsen Chowk.
Catchment Area		The main source of passengers to this station is the residents of Gandhi Bagh, Jalalpura, Hansapuri, Bhaldarpura and the residents of the surrounding residential areas.

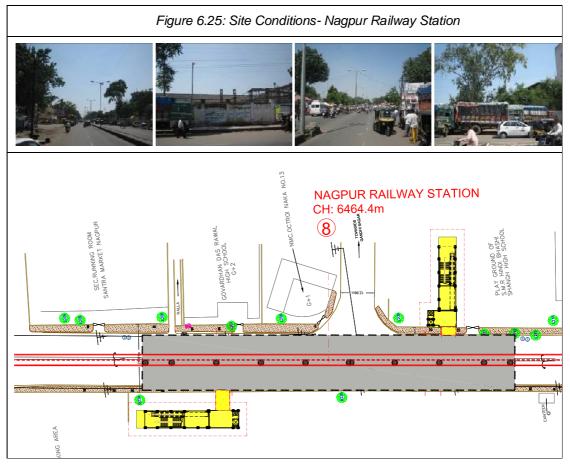
Figure 6.23: Site Conditions- Agrasen Chowk Station



Line -2 (E-W Corridor)

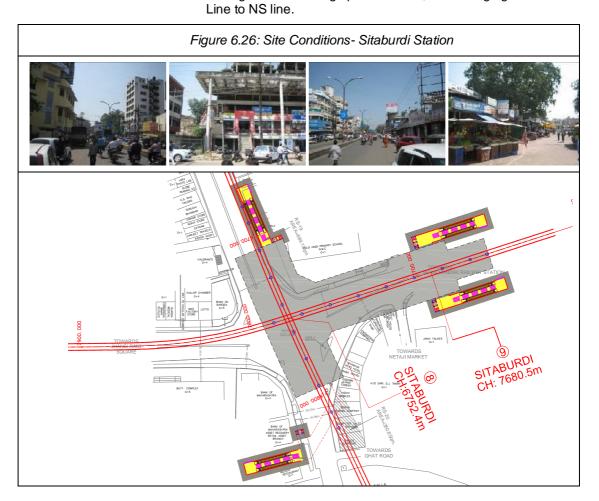
7. Dosar Vaisya Chowk

Chainage	: 5611.00 m
Inter Station Distance	: 851.80 m
Rail Level	: 12.60 m
Station type	: Elevated
Entry / Exits	: On both sides of road.
Location	 The proposed station is located on NH-6 near Masjid Garib Nawaj.
Catchment Area	The station is supposed to cater the people visiting the mosque, the Medical College hostel and the Orange Market



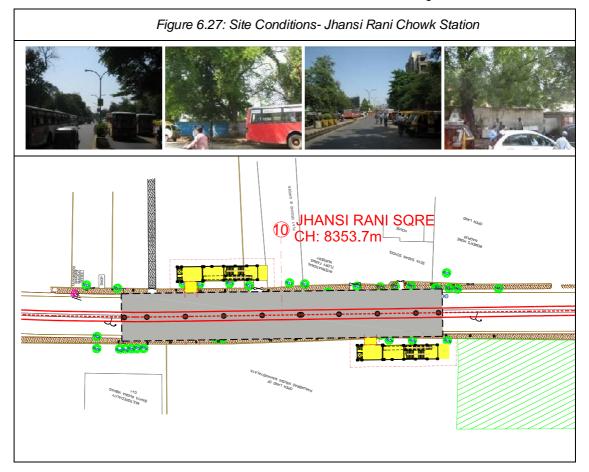
Line -2 (E-W Corridor)

8. Nagpur Railway Station


Chainage	:	6464.40 m
Inter Station Distance	:	853.40 m
Rail Level	:	12.67 m
Station type	:	Elevated
Entry / Exits	:	On both sides of road.
Location	:	The proposed station is located on the eastern side of the Nagpur Junction Railway station.
Catchment Area		Nagpur Railway station is a very busy Junction Railway station of Western railway the proposed station will cater to the passengers using the Railway station to and from the Nagpur City.

Line-1 & Line-2 (Interchange station)

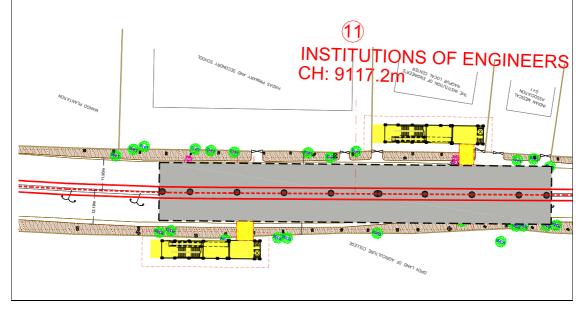
9. Sitaburdi		
Chainage	:	7680.50 m
Inter Station Distance	:	1243.30 m
Rail Level	:	22.25 m
Station type	:	Elevated (Interchange station)
Entry / Exits		On both sides of the road
Location	:	The station is located on the crossing of NH-6 and NH-44, in the area called Sitaburdi.
Catchment Area		The main source of passengers to this station is the residents of surrounding Commercial and residential areas, People visiting Stadium during special events, interchanging from EW



JULY 2013

Line -2 (E-W Corridor)

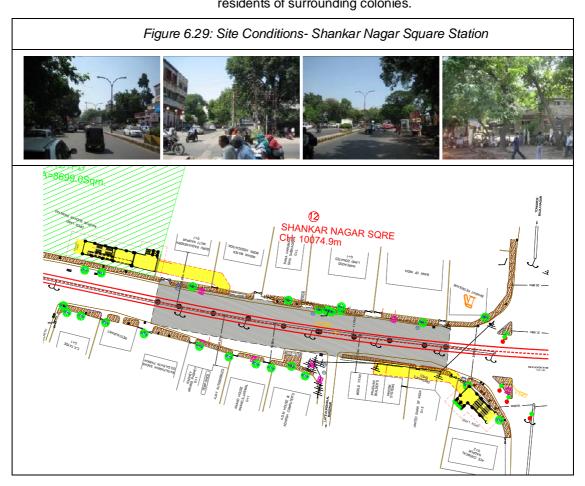
10. Jhansi Rani Chowk		
Chainage	:	8353.70 m
Inter Station Distance	:	646.00 m
Rail Level	:	13.77 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44 in the institutional area having Hospitals and other institutes.
Catchment Area		The main source of passengers to this station is the residents of surrounding areas and people visiting Matrusewa sadan, Multi-Specialty Hospital and other Institutes & school in the surroundings.


Line -2 (E-W Corridor)

11. Institutions of Engineers

Chainage	:	9117.20 m
Inter Station Distance	:	763.60 m
Rail Level	:	12.58 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44 near the Institutes of Engineers and Indian Medical Association.
Catchment Area		The main source of passengers to this station is the people coming to Engineers of Engineers, Hadas school and the residents of surrounding areas.

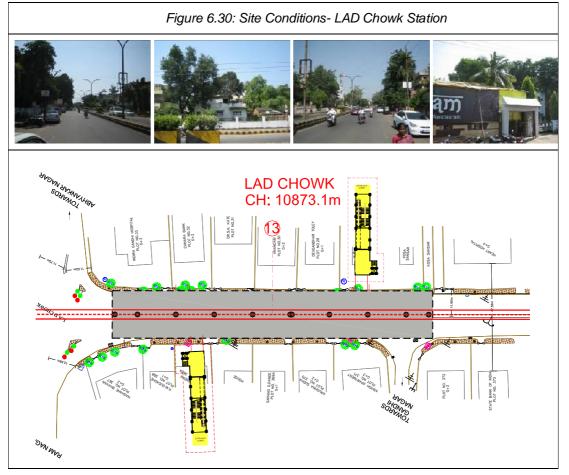
Figure 6.28: Site Conditions- Institutions of Engineers Station



Line -2 (E-W Corridor)

12. Shankar Nagar Square (Bank Of India)

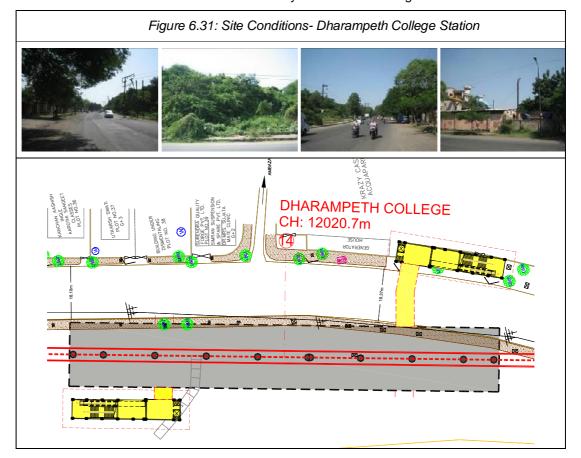
Chainage	:	10074.90 m
Inter Station Distance	:	957.70 m
Rail Level	:	12.86 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The proposed station is located near Swatantraveer Sawarkar Chowk.
Catchment Area		The main source of passengers to this station is the residents of Ram Nagar, Bajaj Nagar, Gokulpeth and residents of surrounding colonies.



Line -2 (E-W Corridor)

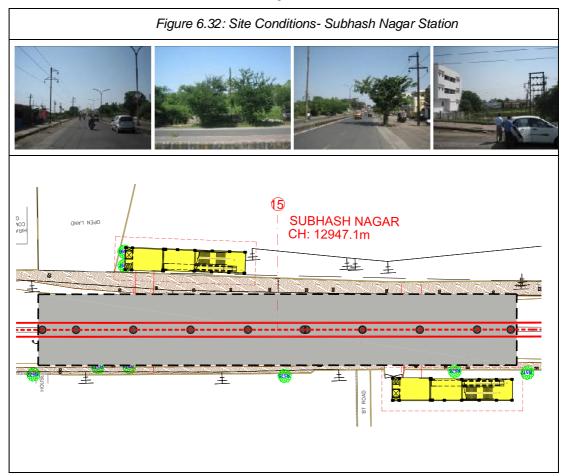
13.	Lad	Chow
13.	Lad	Chowk

Chainage	:	10872.10 m
Inter Station Distance	:	798.20 m
Rail Level	:	12.61 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44 near Lad chowk crossing.
Catchment Area		The main source of passengers to this station is the residents of Abhyankar Nagar, Lad Nagar, Gandhi Nagar and the colonies in the surrounding areas.

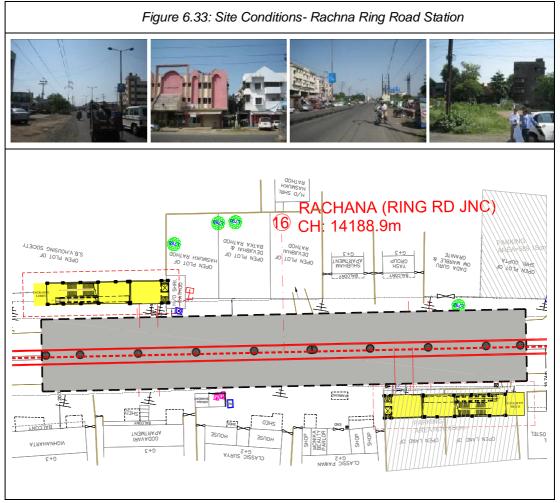


Line -2 (E-W Corridor)

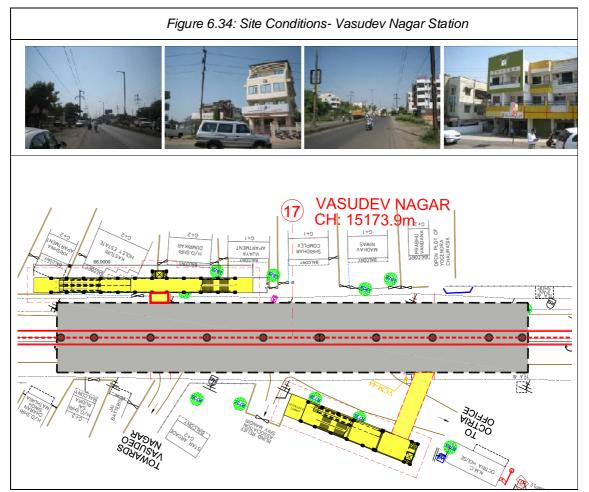
14. Dharampeth College	14.	Dharampeth College	
------------------------	-----	--------------------	--


Chainage	:	12020.70 m
Inter Station Distance	:	1147.60 m
Rail Level	:	13.20 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44 near Ambazari Lake.
Catchment Area		The main source of passengers to this station are the students of Dharmapeeth college, the residents of Ambazari layout and surrounding colonies.

Line -2 (E-W Corridor)

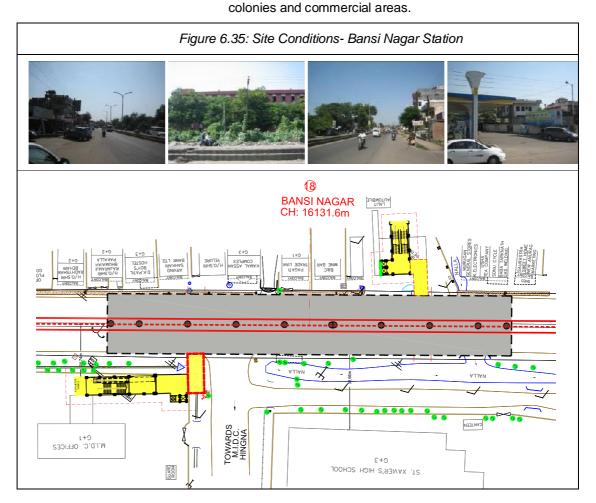

15. Subhash Nagar		
Chainage	:	12947.10 m
Inter Station Distance	:	926.40 m
Rail Level	:	12.84 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44 near CRPF Camp and Subhash Nagar.
Catchment Area		The main source of passengers to this station is the residents of Subhash Nagar, Padsoli and residents of the surrounding residential areas.

Line -2 (E-W Corridor)


16. Rachna Ring Road		
Chainage	:	14188.90 m
Inter Station Distance	:	1241.80 m
Rail Level	:	12.50 m
Station type		Elevated
Entry / Exits		On both sides of the road
Location		The station is located on NH-44 and Ring Road SH-260 crossing.
Catchment Area		The main source of passengers to this station is the residents of Priya Vidya Vihar, surrounding industrial and residential areas.

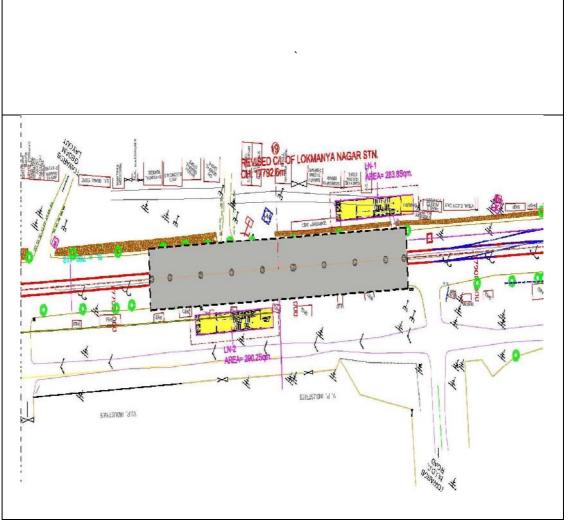
Line -2 (E-W Corridor)

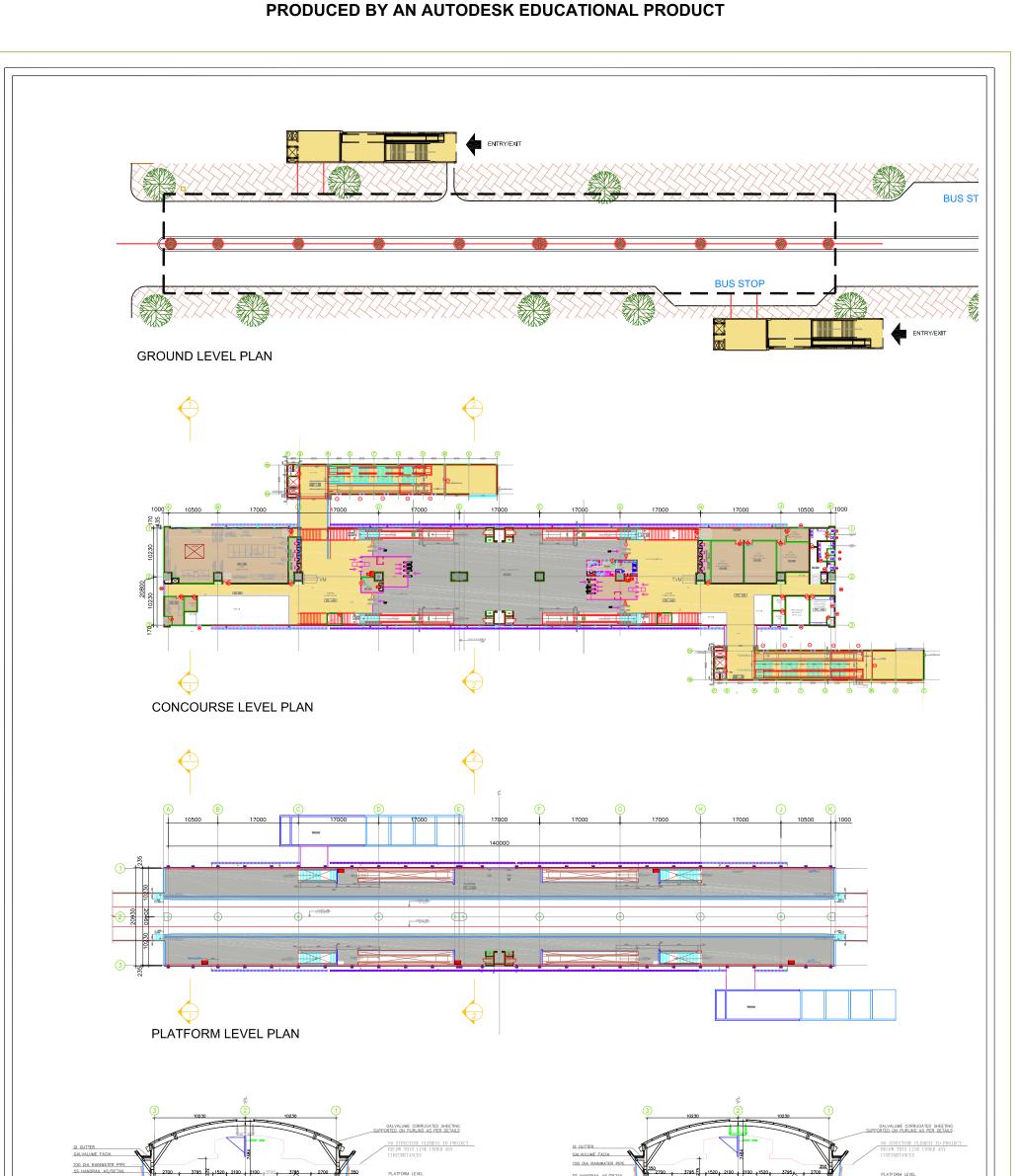
17. Vasudev Nagar	
Chainage	15173.70 m
Inter Station Distance	985.00 m
Rail Level :	12.85 m
Station type	Elevated
Entry / Exits	On both sides of the road
Location	The station is located on NH-44.
Catchment Area	The main source of passengers to this station is the residents of Vasdev Nagar, Vinayak Nagar and the residents of surrounding residential areas.



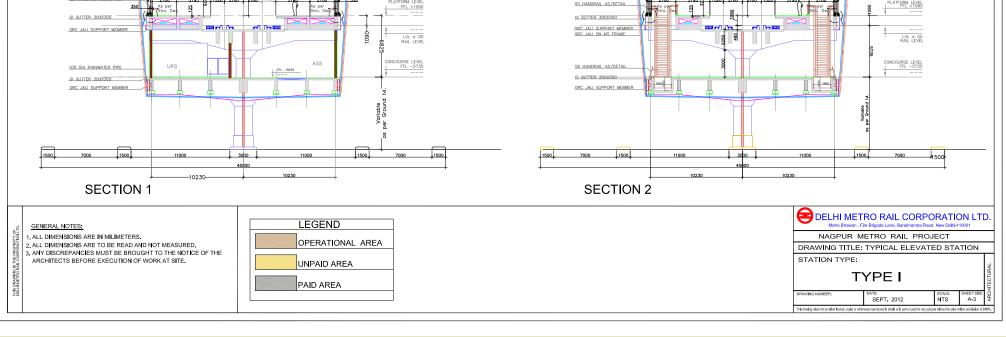
DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT JULY 2013

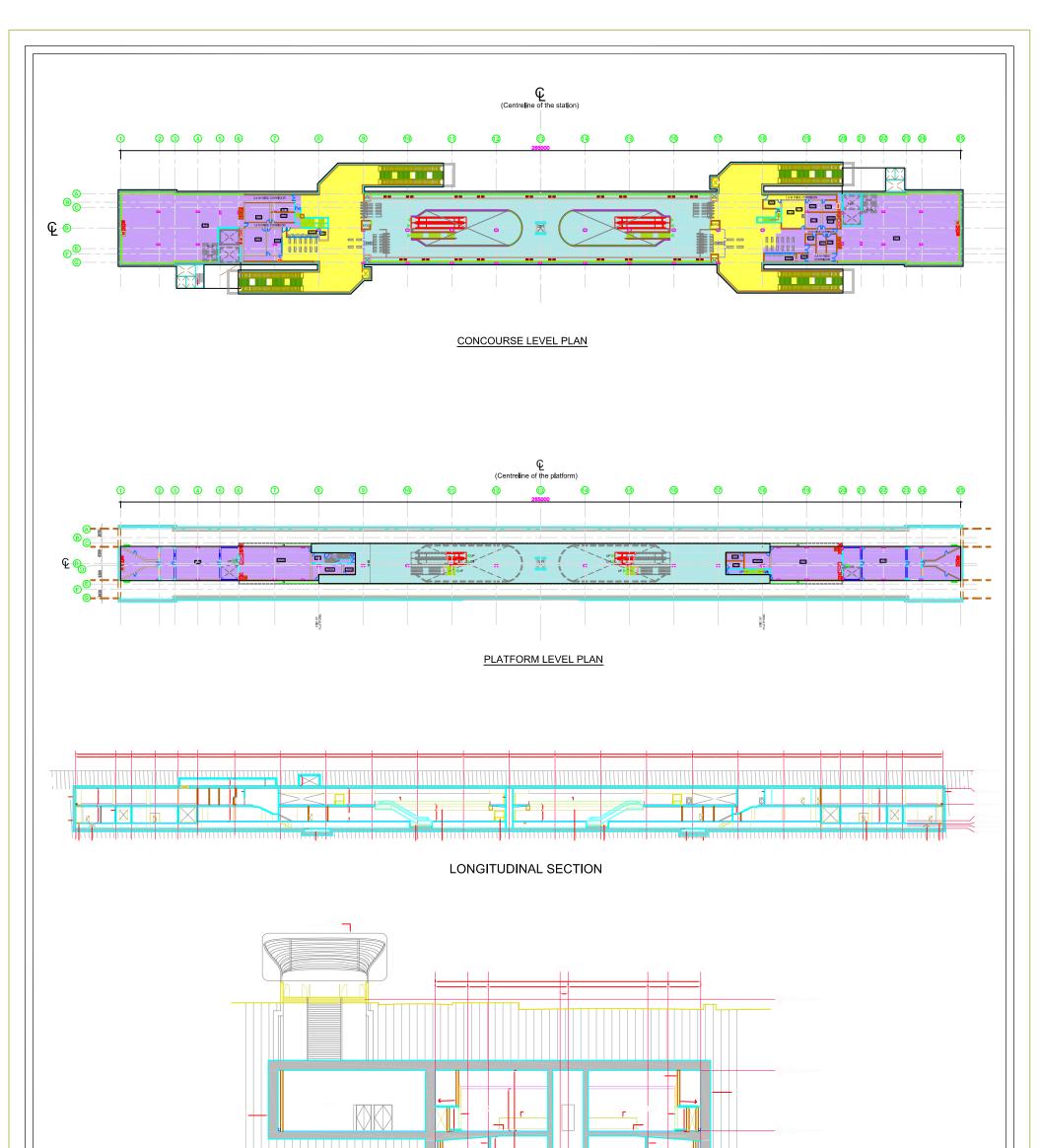
Line -2 (E-W Corridor)


18. Bansi Nagar		
Chainage	:	16131.60 m
Inter Station Distance	:	957.70 m
Rail Level	:	13.00 m
Station type	:	Elevated
Entry / Exits		On both sides of the road
Location	:	The station is located on NH-44.
Catchment Area		The main source of passengers to this station is the residents of Bansi Nagar and surrounding residential

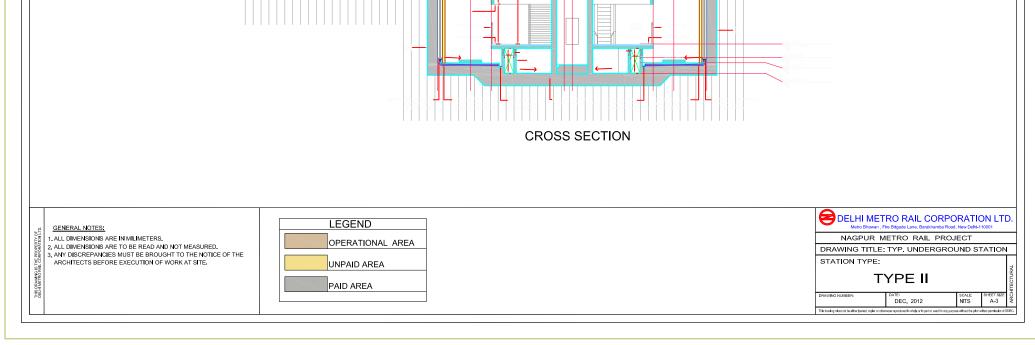


Line -2 (E-W Corridor)


19 Lokmanya Nagar		
Chainage	:	17792.6 m
Inter Station Distance	:	1661 m
Rail Level	:	13.36 m
Station type	:	Elevated
Entry/ Exits	:	On both sides of the road
Location	:	The station is located on NH-44.
Catchment Area		The main source of passengers to this station is the residents & people visiting surrounding residential areas and Lata Mageshakar Hospital.
		Figure 6.36: Lokmanya Nagar Station


DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT JULY 2013

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT



РКОРИСЕР ВҮ АИ АИТОРЕЅК ЕРИСАТІОИАL РКОРИСТ

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

ТООООЯЧ ЛАИОІТАООЕЗК ЕDUCATIONAL РЯОРИСТ

CHAPTER 7

TRAIN OPERATION PLAN

- 7.1 OPERATION PHILOSOPHY
- 7.2 STATIONS
- 7.3 TRAIN OPERATION PLAN
- 7.4 YEAR WISE RAKE REQUIREMENT
- 7.5 COST ESTIMATE

TABLES

TABLE :7.1	STATIONS
TABLE :7.2	CAPACITY PROVIDED FOR LINE-1 NORTH – SOUTH CORRIDOR
TABLE :7.3	CAPACITY PROVIDED FOR LINE-2 EAST-WEST CORRIDOR
TABLE :7.4	TRAIN FREQUENCY : LINE-1: NORTH – SOUTH CORRIDOR
TABLE :7.5	TRAIN FREQUENCY : LINE-2: EAST-WEST CORRIDOR

ATTACHMENTS

ATTACHMENT-I	PHPDT DEMAND AND CAPACITY CHART
ATTACHMENT-II	HOURLY TRAIN OPERATION PLAN
ATTACHMENT-III	DIRECTIONAL SPLIT
ATTACHMENT-IV	VEHICLE KILOMETER
ATTACHMENT-V	RAKE REQUIREMENT

Chapter - 7

TRAIN OPERATION PLAN

7.1 Operation Philosophy

The underlying operation philosophy is to make the MRT System more attractive and economical, the main features being:

- Selecting the most optimum frequency of Train services to meet sectional capacity requirement during peak hours on most of the sections.
- Economical & optimum train service frequency not only during peak period, but also during off-peak period.
- A short train consists of 3 coaches.
- Multi-tasking of train operation and maintenance staff.

7.2 Stations

List of stations for the two Corridors of Nagpur Metro are given below:-

	TABLE :7.1 : STATIONS						
	LINE-1 : NORTH-SOUTH CORRIDOR						
S. No	Name of Station	Chainage (in m)	Inter – Station Distance (in m)	Remarks			
	DEAD END	-145.00					
1	AUTOMOTIVE SQRE	0.0	408.2	Elevated			
2	NARI ROAD	975.8	975.8	Elevated			
3	INDORA CHOWK	2139.7	1163.9	Elevated			
4	KADVI CHOWK	3181.2	1041.5	Elevated			
5	GADDI GODAM SQRE	4399.0	1217.8	Elevated			
6	KASTURCHAND PARK	5148.6	749.6	Elevated			
7	ZERO MILE	6175.5	1026.9	Elevated			
8	SITABURDI	6709.2	533.7	Elevated			
9	CONGRESS NAGAR	7897.2	1188.0	Elevated			

TABLE :7.1 : STATIONS

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOVEMBER 2013 1/19

LINE-1 : NORTH-SOUTH CORRIDOR							
S. No	Name of Station	Chainage (in m)	Inter – Station Distance (in m)	Remarks			
10	RAHATE COLONY	8682.6	785.4	Elevated			
11	AJNI SQUARE	10104.7	1422.1	Elevated			
12	CHHATRAPATI SQUARE	11146.3	1041.6	Elevated			
13	JAIPRAKASH NAGAR	11811.5	661.1	Elevated			
14	UJWAL NAGAR	12846.6	1069.2	Elevated			
15	AIRPORT	13784.9	1344.1	Elevated			
16	NEW AIRPORT	16184.4	2783.1	At Grade			
17	KHAPARI	18460.6	2117.9	At Grade			
	DEAD END	19250.0					

LINE-2 : EAST-WEST CORRIDOR					
S. No	Name of Station	Chainage (in m)	Inter – Station Distance (in m)	Remarks	
	DEAD END	-392.0			
1	PRAJAPATI NAGAR	0.0		Elevated	
2	VAISHNO DEVI CHOWK	1229.3	1229.3	Elevated	
3	AMBEDKAR CHOWK	1947.9	718.6	Elevated	
4	TELEPHONE EXCHANGE	3137.4	1189.5	Elevated	
5	CHITAR OLI CHOWK(GANDHI PUTALA)	3949.7	812.3	Elevated	
6	AGRASEN CHOWK	4759.2	809.5	Elevated	
7	DOSAR VAISYA CHOWK(MAYO HOSPITAL)	5611.0	851.8	Elevated	
8	NAGPUR RAILWAY STATION	6464.4	853.4	Elevated	
9	SITABURDI	7707.7	1243.3	Elevated	
10	JHANSI RANI SQRE	8353.7	646.0	Elevated	
11	INSTITUTIONS OF ENGINEERS	9117.2	763.5	Elevated	
12	SHANKAR NAGAR SQRE(BANK OF INDIA)	10074.9	957.7	Elevated	
13	LAD CHOWK	10873.1	798.2	Elevated	
14	DHARAMPETH COLLEGE	12020.7	1147.6	Elevated	
15	SUBHASH NAGAR	12947.1	926.4	Elevated	
16	RACHANA (RING RD JNC)	14188.9	1241.8	Elevated	
17	VASUDEV NAGAR	15173.9	985.0	Elevated	
18	BANSI NAGAR	16131.6	957.7	Elevated	

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOVEMBER 2013

LINE-2 : EAST-WEST CORRIDOR						
S. No	Name of Station		Inter – Station Distance (in m)	Remarks		
19	LOKMANYA NAGAR	17424.1	1292.5	Elevated		
	DEAD END	18165.0				

7.3 TRAIN OPERATION PLAN :

7.3.1 Salient Features

- Running of services for 19 hours of the day (5 AM to Midnight) with a station dwell time of 30 seconds,
- Make up time of 5-10% with 8-12% coasting.
- Scheduled speed for these corridors has been assumed as: <u>Line-1: North – South Corridor</u>
 - 'Automotive Sqre to Congress Nagar' section: 32 kmph
 - 'Congress Nagar to Khapri Station' section: 34 kmph

Line-2: East-West Corridor

- 'Prajapati Nagar to Lokmanya Nagar' section: 30 kmph
- 'Agrasen Chowk to Subhash Nagar' section: 30 kmph

7.3.2 Traffic Demand

Peak hour peak direction traffic demands (PHPDT) for the Nagpur Metro 'Line-1: North-South Corridor' & 'Line-2: East- West Corridor' for the year 2016, 2021, 2026, 2031, 2036 and 2041 for the purpose of planning are indicated in Attachment I/A1, B1 & C1, D1, E1, F1, Attachment I/A2, B2, C2, D2, E2, & F2 respectively.

7.3.3 Train formation

To meet the above projected traffic demand, the possibility of running trains with composition of 3 cars with different headway has been examined.

Composition

DMC : Driving Motor Car TC : Trailer Car

Capacity (@ 6 passengers per square meter of standee area)

Driving Motor Car (DMC)	- 247 (43 seated + 204 standing)
Trailer Car (TC)	- 270 (50 seated + 220 standing)
3 Car Train	- 764 (136 seated + 628 standing)

7.3.4 Train Operation Plan

Based on the projected PHPDT demand, Train operation plan with train carrying capacity @ 6 persons per square meter of standee area for the Nagpur Metro 'Line 1: North-South Corridor' & 'Line 2: East West Corridor' for the year 2016, 2021, 2026, 2031, 2036 and 2041 are given below:

7.3.4.1 Line-1: North – South Corridor

Train Operation Plan for Line 1: North-South Corridor has been planned in such a way that there are two loops of train operation. In one loop, trains run from 'Automotive Sqre to Congress Nagar' at a given headway and in other loop trains run from 'Automotive Sqre to Khapri Station' at the same headway, thus resulting in <u>half the headway</u> in 'Automotive Sqre to Congress Nagar' Section as compared to 'Congress Nagar to Khapri Station'. For this Train Operation Plan, reversal facility is required at Congress Nagar.

i) Year 2016:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at <u>12 min</u> headway with 3<u>-Car</u> train and in 'Automotive Sqre to Khapri Station' Loop at <u>12 min</u> headway with 3<u>-Car</u> train. This results in following train operation in different section:

(a) 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/A1)

- 6 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 7640 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 9730 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 10089 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 8272 to 2561 only. The planned capacity of 7640 (9730 under dense loading) is less than the PHPDT demand in two (one, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/A1)

- 12 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 3820 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 4865 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 5288 is in the Section between Congress Nagar to Rahate Colony and demand in the remaining sections is in the range of 4513 to 2140 only. The planned capacity of 3820 (4865 under dense

loading) is less than the PHPDT demand in two (one, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor is the year 2016 is tabulated and represented on a chart enclosed as Attachment I/A1.

ii) Year 2021:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at <u>10 min</u> headway with 3<u>-Car</u> train and in 'Automotive Sqre to Khapri Station' Loop at <u>10 min</u> headway with 3<u>-Car</u> train. This results in following train operation in different section:

(a) 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/B1)

- 5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 9168 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 11676 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 10936 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 9225 to 3010 only. The planned capacity of 9168 (11676 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/B1)

- 10 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 4584 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 5838 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 5728 is in the Section between Congress Nagar to Rahate Colony and demand in the remaining sections is in the range of 4876 to 2267 only. The planned capacity of 4584 (5838 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor is the year 2021 is tabulated and represented on a chart enclosed as Attachment I/B1.

iii) Year 2026:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at 9<u>min</u> headway with 3<u>-Car</u> train and in 'Automotive Sqre to Khapri Station' Loop at 9<u>min</u> headway with 3<u>-Car</u> train. This results in following train operation in different section:

(a) 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/C1)

- 4.5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 10187 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 12973 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 1195 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 10297 to 3453 only. The planned capacity of 10187 (12973 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/C1)

- 9 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 5093 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 6487 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 6305 is in the Section between Congress Nagar to Rahate Colony and demand in the remaining sections is in the range of 5338 to 2489 only. The planned capacity of 5093 (6487 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor in the year 2021 is tabulated and represented on a chart enclosed as Attachment I/C1.

iv) Year 2031:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at 8<u>min</u> headway with 3<u>-Car</u> train and in 'Automotive Sqre to Khapri Station' Loop at 8<u>min</u> headway with 3<u>-Car</u> train. This results in following train operation in different section:

7. 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/D1)

- 4 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 11460 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 14595 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 12934 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 11631

6/19

to 4045 only. The planned capacity of 11460 (14595 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/D1)

- 8 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 5730 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 7298 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 6918 is in the Section between Congress Nagar to Rahate Colony and demand in the remaining sections is in the range of 5854 to 2748 only. The planned capacity of 5730 (7298 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor in the year 2031 is tabulated and represented on a chart enclosed as Attachment I/D1.

v) Year 2036:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at $\underline{7 \text{ min}}$ headway with 3<u>-Car</u> train and in 'Automative Sqre to Khapri Station' Loop at $\underline{7 \text{ min}}$ headway with 3<u>-Car</u> train. This results in following train operation in different section:

(a) 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/E1)

- 3.5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 13097 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 16680 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 14286 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 13002 to 4611 only. The planned capacity of 13097 (16680 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/E1)

- 7 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 6549 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 8340 @ 8 persons per square meter of standee area under dense loading conditions.

7/19

NOVEMBER 2013

 The maximum PHPDT demand of 7688 is in the Section between Congress nagar to Rahate Colony and demand in the remaining sections is in the range of 6476 to 3049 only. The planned capacity of 6549 (8340 under dense loading) is is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor is the year 2036 is tabulated and represented on a chart enclosed as Attachment I/E1.

vi) Year 2041:

Train operation in 'Automotive Sqre to Congress Nagar' Loop at <u>6 min</u> headway with 3<u>-Car</u> train and in 'Automotive Sqre to Khapri Station' Loop at <u>6 min</u> headway with 3<u>-Car</u> train. This results in following train operation in different section:

(a) 'Automotive Sqre to Congress Nagar' Section (Refer Attachment I/F1)

- 3 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 15280 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 19460 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 15729 is in the Section between Sitaburdi to Congress Nagar and demand in the remaining sections is in the range of 14572 to 5274 only. The planned capacity of 15280 (19460 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of eight sections.

(b) 'Congress Nagar to Khapri Station' Section (Refer Attachment I/F1)

- 6min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 7640 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 9730 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 8477 is in the Section between Congress nagar to Rahate Colony and demand in the remaining sections is in the range of 7149 to 3660 only. The planned capacity of 7640 (9730 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of eight sections.

Traffic demand and train capacity for this corridor is the year 2041 is tabulated and represented on a chart enclosed as Attachment I/F1

7.3.4.2 Line-2: East –West Corridor

Train Operation Plan for Line 2: East-west Corridor has been planned in such a way that there are two loops of train operation. In one loop, trains run from 'Prajapati Nagar to Lokmanya Nagar' at a given headway and in other loop trains run from 'Agrasen Chowk to Subhash Nagar' at the same headway, thus resulting in <u>half the headway</u> in 'Agrasen Chowk to Subhash Nagar' Section as compared to 'Prajapati Nagar to Agrasen Chowk' Section & 'Subhash Nagar to Lokmanya Nagar' Section. For this Train Operation Plan, reversal facilities are required at Agrasen Chowk and Subhash Nagar'.

i) Year 2016:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at <u>13 min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at <u>13 min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

(a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/A2)

- 13 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 3526 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 4491 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 4090 is in the Section between Chitar Oli Chowk (Gandhi Putala) to Agrasen Chowk and demand in the remaining sections is in the range of 3787 to 481 only. The planned capacity of 3526 (4491 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) out of nine sections sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section.

(b) 'Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/A2)

- 6.5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 7052 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 8982 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 7746 is in the Section between Institute of Engineers to Shankar Nagar Square and demand in the remaining sections is in the range of 7341 to 4072 only. The planned capacity of 7052 (8982 under dense loading) is less than the PHPDT demand in two (zero, with dense

loading capacity) sections out of nine sections of 'Agrasen Chowk to Subhash Nagar' Section.

Traffic demand and train capacity for this corridor in the year 2016 is tabulated and represented on a chart enclosed as Attachment I/A2.

ii) Year 2021:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at <u>12 min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at <u>12 min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

- (a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/B2)
 - 12 min Headway with 3-car train.
 - Available Peak Hour Peak Direction Capacity of 3820 @ 6 persons per square meter of standee area
 - Available Peak Hour Peak Direction Capacity of 4865 @ 8 persons per square meter of standee area under dense loading conditions.
 - The maximum PHPDT demand of 4356 is in the Section between Chitar Oli Chowk (Gandhi Putala) to Agrasen Chowk and demand in the remaining sections is in the range of 4157 to 517 only. The planned capacity of 3820 (4865 under dense loading) is less than the PHPDT demand in two (zero, with dense loading capacity) out of nine sections sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section.

(b) 'Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/B2)

- 6 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 7640 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 9730 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 8460 is in the Section between Institute of Engineers to Shankar Nagar Square and demand in the remaining sections is in the range of 7970 to 4472 only. The planned capacity of 7640 (9730 under dense loading) is less than the PHPDT demand in two (zero, with dense

loading capacity) sections out of nine sections of 'Agrasen Chowk to Subhash Nagar' Section.

Traffic demand and train capacity for this corridor in the year 2021 is tabulated and represented on a chart enclosed as Attachment I/B2.

iii) Year 2026:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at <u>10min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at 10<u>min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

(a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/C2)

- 10 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 4584 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 5838 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 4703 is in the Section between Chitar oli Chowk (Gandhi Putala) to Agrasen Chowk and demand in the remaining sections is in the range of 4530 to 549 only. The planned capacity of 4584 (5838 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) out of nine sections sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section.

(b) 'Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/C2)

- 5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 9168 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 11676 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 9154 is in the Section between Institute of Engineers to Shankar Nagar Square and demand in the remaining sections is in the range of 8754 to 4870 only. The planned capacity of 9168 (11676 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of nine sections of 'Agrasen Chowk to Subhash Nagar' Section.

Traffic demand and train capacity for this corridor in the year 2026 is tabulated and represented on a chart enclosed as Attachment I/C2.

iv) Year 2031:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at <u>9 min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at <u>9 min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

- (a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/D2)
 - 9 min Headway with 3-car train.
 - Available Peak Hour Peak Direction Capacity of 5093 @ 6 persons per square meter of standee area
 - Available Peak Hour Peak Direction Capacity of 6487 @ 8 persons per square meter of standee area under dense loading conditions.
 - The maximum PHPDT demand of 5094 is in the Section between Chitar oli Chowk (Gandhi Putala) to Agrasen chowk and demand in the remaining sections is in the range of 4934 to 585 only. The planned capacity of 5093 (6487 under dense loading) is less than the PHPDT demand in one (zero, with dense loading capacity) sections out of nine sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Sections.

(b) 'Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/D2)

- 4.5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 10187 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 12973 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 9906 is in the Section between Institute of Engineers to Shankar Nagar Square and demand in the remaining sections is in the range of 9675 to 5301only. The planned capacity of 10187 (12973 under dense loading) is more than the PHPDT demand in nine sections of 'Agrasen Chowk to Subhash Nagar' Sections.

Traffic demand and train capacity for this corridor in the year 2031 is tabulated and represented on a chart enclosed as Attachment I/D2.

ً

v) Year 2036:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at 8<u>min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at 8<u>min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

(a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/E2)

- 8 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 5730 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 7298 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 5542 is in the Section between Chitar oli Chowk (Gandhi putala) to Agrasen Chowk and demand in the remaining sections is in the range of 5410 to 621 only. The planned capacity of 5730 (7298 under dense loading) is more than the PHPDT demand in nine sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Sections.

(b) 'Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/E2)

- 4 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 11460 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 14595 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 10748 is in the Section between Nagpur Railway Station to Sitaburdi and demand in the remaining sections is in the range of 10716to 5808 only. The planned capacity of 11460 (14595 under dense loading) is more than the PHPDT demand in nine sections of 'Agrasen Chowk to Subhash Nagar' Sections.

Traffic demand and train capacity for this corridor in the year 2036 is tabulated and represented on a chart enclosed as Attachment I/E2.

ً

vi) Year 2041:

Train operation in 'Parjapati Nagar to Lokmanya Nagar' Loop at 7<u>min</u> headway with <u>3-Car</u> train and in 'Agrasen Chowk to Subhash Nagar' Loop at 7<u>min</u> headway with <u>3-Car</u> train. This results in following train operation in different section:

(a) 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Refer Attachment I/F2)

- 7 min Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 6549 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 8340 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 6330 is in the Section between Chitar oli Chowk (Gandhi Putala) and demand in the remaining sections is in the range of 5871 to 659 only. The planned capacity of 6549 (8340 under dense loading) is more than the PHPDT demand in nine sections of 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' Sections.

(b) Agrasen Chowk to Subhash Nagar' Section (Refer Attachment I/F2)

- 3.5 min Effective Headway with 3-car train.
- Available Peak Hour Peak Direction Capacity of 13097 @ 6 persons per square meter of standee area
- Available Peak Hour Peak Direction Capacity of 16680 @ 8 persons per square meter of standee area under dense loading conditions.
- The maximum PHPDT demand of 11882 is in the Section between Nagpur Railway Station to Sitaburdi and demand in the remaining sections is in the range of 11528 to 6297 only. The planned capacity of 13097 (16680 under dense loading) is more than the PHPDT demand in nine sections of 'Agrasen Chowk to Subhash Nagar' Sections.

Traffic demand and train capacity for this corridor in the year 2041 is tabulated and represented on a chart enclosed as Attachment I/F2.

The above Train Operation Plan is based on calculations on the basis of available traffic data. In case of any mismatch in the capacity provided and the actual traffic, the capacity can be moderated suitably by adjusting the Headway. The PHPDT capacity provided on the two corridors in different years of operation is tabulated below:

Sections	Year	Headway (min)	No. of Rakes	Rake Consist	No. of Coaches	Max. PHPDT Demand	PHPDT Capacity Available
Automotive Sqre to Congress Nagar Section	2016	6	11 Rakes	3-car	33	10089	7640 (9730*)
Congress Nagar to Khapri Station Section	2010	12	of 3-car	3-car		5288	3820 (4865*)
Automotive Sqre to Congress Nagar Section	2021	5	13 Rakes	3-car	39	10936	9168 (1676*)
Congress Nagar to Khapri Station Section		10	of 3-car	3-car		5728	4584 (5838*)
Automotive Sqre to Congress Nagar Section	2026	4.5	15 Rakes	3-car	45	11915	10187 (12973*)
Congress Nagar to Khapri Station Section		9	of 3-car	3-car		6305	5093 (6487*)
Automotive Sqre to Congress Nagar Section	2031	4	17 Rakes	3-car	51	12934	11460 (14595*)
Congress Nagar to Khapri Station Section		8	of 3-car	3-car		6918	5730 (7298*)
Automotive Sqre to Congress Nagar Section	2036	3.5	20 Rakes	3-car	60	14286	13097 (16680*)
Congress Nagar to Khapri Station Section		7	of 3-car	3-car		7688	6549 (8340*)
Automotive Sqre to Congress Nagar Section	2041	3	21 Rakes	3-car	63	15729	15280 (19460*)
Congress Nagar to Khapri Station Section		6	of 3-car	3-car		8477	7640 (9730*)

 TABLE :7.2

 Capacity Provided for Line-1: North – South Corridor

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOVEMBER 2013

15/19

Sections	Year	Headway (min)	No. of Rakes	Rake Consist	No. of Coaches	Max. PHPDT Demand	PHPDT Capacity Available
Prajapati Nagar to Agrasen Chowk Section		13		3-car		4090	3526 (4491*)
Agrasen Chowk to Subhash Nagar Section	2016	6.5	12 Rakes of 3-	3-car	36	7746	7052 (8982*)
Subhash Nagar to Lokmanya Nagar Section		13	car	3-car		3787	3526 (4491*)
Prajapati Nagar to Agrasen Chowk Section		12	10	3-car		4356	3820 (4865*)
Agrasen Chowk to Subhash Nagar Section	2021	6	13 Rakes of 3-	3-car	39	8460	7640 (9730*)
Subhash Nagar to Lokmanya Nagar Section		12	car	3-car		4157	3820 (4865*)
Prajapati Nagar to Agrasen Chowk Section		10		3-car	45	4703	4584 (5838*)
Agrasen Chowk to Subhash Nagar Section	2026	5	15 Rakes of 3-	3-car		9154	9168 (11676*)
Subhash Nagar to Lokmanya Nagar Section		10	car	3-car		4530	4584 (5838*)
Prajapati Nagar to Agrasen Chowk Section		9		3-car	51	5094	5093 (6487*)
Agrasen Chowk to Subhash Nagar Section	2031	4.5	17 Rakes of 3-	3-car		9906	10187 (12973*)
Subhash Nagar to Lokmanya Nagar Section		9	car	3-car		4934	5093 (6487*)
Prajapati Nagar to Agrasen Chowk Section		8	1	3-car		5542	5730 (7298*)
Agrasen Chowk to Subhash Nagar Section	2036	4	18 Rakes of 3-	3-car	54	10748	11460 (14595*)
Subhash Nagar to Lokmanya Nagar Section		8	car	3-car		5410	5730 (7298*)
Prajapati Nagar to Agrasen Chowk Section		7	0.0	3-car		6330	6549 (8340*)
Agrasen Chowk to Subhash Nagar Section	2041	3.5	20 Rakes of 3-	3-car	60	11882	13097 (16680*)
Subhash Nagar to Lokmanya Nagar Section		7	car	3-car		5871	6549 (8340*)

TABLE :7.3 Capacity Provided for Line-2: East-West Corridor

* @ 8 persons per square meter of standee area

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOVEMBER 2013

7.3.5 Train frequency

TABLE :7.4

Train Frequency Line-1: North – South Corridor

	20	16	20	21	20	26	20	31	20	36	20	41
Sections	Peak Hour h/w	Lean Hour h/w										
Automotive Sqre to Congress Nagar Section	6 min	10 to 30 min	5 min	8 to 20 min	4.5m in	6 to 20 min	4 min	6 to 20 min	3.5 min	5 to 15 min	3 min	5 to 15 min
Congress Nagar to Khapri Station Section	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min	6 min	10 to 30 min

TABLE :7.5

Train Frequency Line-2: East-West Corridor

	20	16	20	21	20	26	20	31	20	36	20	41
Sections	Peak Hour h/w	Lean Hour h/w										
Prajapati Nagar to Agrasen Chowk Section	13 min	20 to 60 min	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min
Agrasen Chowk to Subhash Nagar Section	6.5 min	10 to 30 min	6 min	10 to 30 min	5 min	8 to 20 min	4.5 min	6 to 20 min	4 min	6 to 20 min	3.5 min	5 to 15 min
Subhash Nagar to Lokmanya Nagar Section	13 min	20 to 60 min	12 min	20 to 60 min	10 min	16 to 40 min	9 min	12 to 40 min	8 min	12 to 40 min	7 min	10 to 30 min

No services are proposed between 00.00 hrs to 5.00 hrs, which are reserved for maintenance of infrastructure and rolling stock.

NOVEMBER 2013

17/19

7.3.6 Hourly Train Operation plan

The hourly distribution of daily transport capacity is presented in **Table 1.1A**, **1.1B**, **1.2A**, **1.2B**, **1.3A**, **1.3B**, **1.4A**, **1.4B**, **1.5A**, **1.5B**, **1.6A**, **& 1.6B** for 'Automotive Sqre to Congress Nagar' Section and 'Congress Nagar to Khapari' Section (Line-1: North – South Corridor) and **Table 1.7A**, **1.7B**, **1.7C**, **1.8A**, **1.8B**, **1.8C**, **1.9A**, **1.9B**, **1.9C**, **1.10A**, **1.10B**, **1.10C**, **1.11A**, **1.11B**, **1.11C**, **1.12A**, **1.12B**, **& 1.12C** for 'Prajapati Nagar to Agrasen Chowk' Section, 'Agrasen Chowk to Subhash Nagar' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Line-2: East- West Corridor) respectively for years 2016, 2021, 2026, 2031, 2036, 2041 and enclosed as **Attachment II**.

Number of train trips per direction per day for 'Automotive Sqre to Congress Nagar' Section and 'Congress Nagar to Khapari' Section (Line-1: North – South Corridor) is worked out as 108 & 54 in the year 2016, 138 & 69 in the year 2021 and 158 & 79 in the year 2026, 168 & 84 in the year 2031, 200 & 100 in the year 2036 and 216 & 108 in the year 2041 respectively. Number of train trips per directions per day for 'Prajapati Nagar to Agrasen Chowk' Section, 'Agrasen Chowk to Subhash Nagar' Section and 'Subhash Nagar to Lokmanya Nagar' Section (Line-2: East- West Corridor) is worked out as 51,102 & 51 in the year 2016, 54, 108 & 54 in the year 2021 and 70,140 & 70 in the year 2026, 74, 158 & 74 in the year 2031, 83, 166 & 83 in the year 2036 and 99, 198 & 99 in the year 2041 respectively. The directional splits for Line-1: North – South Corridor and Line-2: East- West Corridor is presented in **Table 2.1 and 2.2** enclosed as **Attachment III**.

7.3.7 Vehicle Kilometer

Based on above planning, after considering maintenance period and assuming 340 days in service in a year, Vehicle Kilometers for Nagpur Metro Rail Network is given in **Table 3.1** for Line 1: North-South corridor and **Table 3.2** for Line 2: East-West Corridor enclosed as **Attachment IV**.

7.4 YEAR WISE RAKE REQUIREMENT

Based on Train formation and headway as decided above to meet Peak Hour Peak Direction Traffic Demand, Rake requirement has been calculated and enclosed as **Attachment V.**

Requirements of coaches is calculated based on following assumptions-Assumptions –

i) Train Composition planned as under							
3 car Train Composition	: DMC +TC +DMC						
Train Carrying Capacity of 3	: 764 passengers @6 standee/sqm						
Car Train (@6 passengers per							
square meter of standee area)							

NOVEMBER 2013

- (ii) Coach requirement has been calculated based on headway during peak hours.
- (iii) Traffic reserve is taken as one train to cater to failure of train on line and to make up for operational time list.
- (iv) Repair and maintenance reserve has been estimated as 8 % of total requirement (Bare).
- (v) The calculated number of rakes in fraction is rounded off to next higher number.
- (vi) Schedule speed is taken as:

Line-1: North-South Corridor

- 'Automotive Sqre to Congress Nagar' Section: 32 kmph
- 'Congress Nagar to Khapri Station' Section: 36 kmph

Line-2: East-West Corridor

- · 'Prajapati Nagar to Lokmanya Nagar' Section: 30 kmph
- 'Agrasen Chowk to Subhash Nagar' Section: 29 kmph
- (vii) Total Turn round time is taken as 6 min at terminal stations.

7.5 Cost Estimate

The estimated cost per coach at June 2012 Price level exclusive of taxes and duties may be assumed as INR 8.5 Crores per Coach. Total 33+36 = 69 coaches are required in year 2016 for the two lines in Nagpur Metro Rail Network.

Attachment - I/A1

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 1 : North - South Corridor

Year:	2016	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	6	(In 'Automotive Sqre to Congress Nagar' Section)
		(I IO NI (

Headway (min) 12

(In 'Congress Nagar to	
Khanaril Castian)	

-					Khapari' Section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	AUTOMOTIVE SQRE	NARI ROAD	2561	7640	9730
2	NARI ROAD	INDORA CHOWK	3754	7640	9730
3	INDORA CHOWK	KADVI CHOWK	4885	7640	9730
4	KADVI CHOWK	GADDI GODAM SQRE	6039	7640	9730
5	GADDI GODAM SQRE	KASTURCHAND PARK	6059	7640	9730
6	KASTURCHAND PARK	ZERO MILE	7326	7640	9730
7	ZERO MILE	SITABURDI	8272	7640	9730
8	SITABURDI	CONGRESS NAGAR	10089	7640	9730
9	CONGRESS NAGAR	RAHATE COLONY	5288	3820	4865
10	RAHATE COLONY	AJNI SQUARE	4513	3820	4865
11	AJNI SQUARE	CHHATRAPATI SQUARE	3935	3820	4865
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	3561	3820	4865
13	JAIPRAKASH NAGAR	UJWAL NAGAR	3289	3820	4865
14	UJWAL NAGAR	AIRPORT	2939	3820	4865
15	AIRPORT	NEW AIRPORT	2735	3820	4865
16	NEW AIRPORT	KHAPARI	2140	3820	4865

Note: Reversal facility required at Congress Nagar.

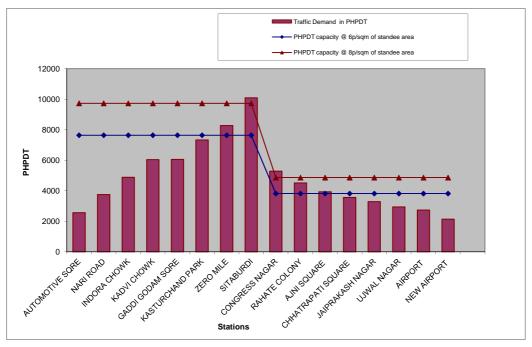


Fig 1.1

Attachment - I/A2

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 2 : East - West Corridor

Year:	2016	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	6.5	(In 'Agrasen Chowk to Subhash Nagar' Section)
Headway (min)	13	(In 'Prajapati Nagar to

Subhash Nagar' Section) (In 'Prajapati Nagar to Agrasen Chowk' Section and 'Subhash Nagar to

Lokmanya Nagar' s ion)

<u> </u>	5201	70	T (" D	DUDDT	Lokmanya Nagar' section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	481	3526	4491
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	903	3526	4491
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1378	3526	4491
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	2919	3526	4491
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	4090	3526	4491
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	4843	7052	8982
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	5288	7052	8982
8	NAGPUR RAILWAY STATION	SITABURDI (INTERCHANGE)	7341	7052	8982
9	SITABURDI (INTERCHANGE)	JHANSI RANI SQUARE	6141	7052	8982
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	4038	7052	8982
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	7746	7052	8982
12	SHANKAR NAGAR SQUARE	LAD CHOWK	6114	7052	8982
13	LAD CHOWK	DHARMPETH COLLEGE	5601	7052	8982
14	DHARMPETH COLLEGE	SUBHASH NAGAR	4072	7052	8982
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	3787	3526	4491
16	RACHNA RING ROAD JN.	VASDEV NAGAR	3494	3526	4491
17	VASDEV NAGAR	BANSI NAGAR	2714	3526	4491
18	BANSI NAGAR	LOKMANYA NAGAR	2212	3526	4491

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

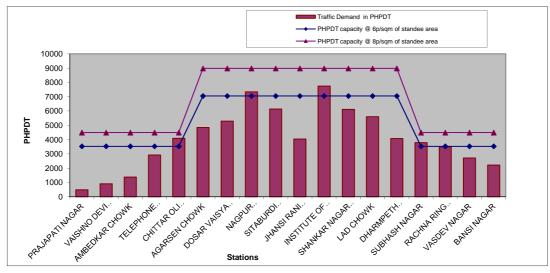


Fig 1.2

Attachment - I/B1

(In 'Congress Nagar to

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network Line 1 : North - South Corridor

Year:	2021	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	5	(In 'Automotive Sqre to Congress Nagar' Section)

Headway (min)

10

Khapari' Section) S.N FROM то Traffic Demand **PHPDT** capacity **PHPDT** capacity @ in PHPDT @ 6p/sqm of 8p/sqm of standee standee area area 1 AUTOMOTIVE SQRE NARI ROAD 3010 9168 11676 2 NARI ROAD INDORA CHOWK 4476 9168 11676 3 INDORA CHOWK **KADVI CHOWK** 5767 9168 11676 4 KADVI CHOWK GADDI GODAM SQRE 7042 9168 11676 GADDI GODAM SQRE 5 KASTURCHAND PARK 7021 9168 11676 6 KASTURCHAND PARK ZERO MILE 8313 9168 11676 SITABURDI ZERO MILE 9225 9168 11676 7 8 SITABURDI CONGRESS NAGAR 10936 9168 11676 CONGRESS NAGAR RAHATE COLONY 4584 9 5728 5838 10 RAHATE COLONY AJNI SQUARE 4876 4584 5838 AJNI SQUARE 4584 CHHATRAPATI SQUARE 4241 11 5838 12 CHHATRAPATI SQUARE JAIPRAKASH NAGAR 3822 4584 5838 JAIPRAKASH NAGAR UJWAL NAGAR 13 3520 4584 5838 14 UJWAL NAGAR AIRPORT 3136 4584 5838 NEW AIRPORT AIRPORT 15 2911 4584 5838 NEW AIRPORT KHAPARI 2267 4584 16 5838

Note: Reversal facility required at Congress Nagar.

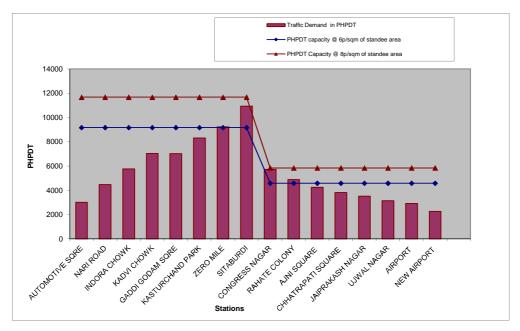
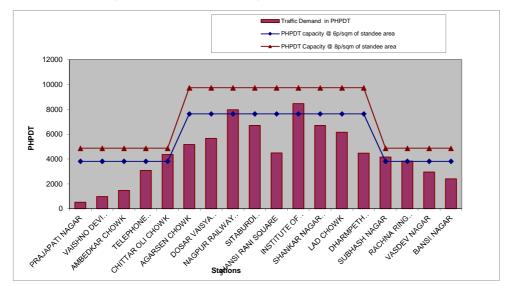


Fig 2.1


Attachment - I/B2

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network Line 2 : East - West Corridor

Line 2. East - West Connuol		
Year:	2021	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	6	(In 'Agrasen Chowk to Subhash Nagar' Section)
Headway (min)	12	(In 'Prajapati Nagar to Agrasen Chowk' Section and

					Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	517	3820	4865
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	971	3820	4865
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1479	3820	4865
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	3084	3820	4865
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	4356	3820	4865
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	5167	7640	9730
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	5649	7640	9730
8	NAGPUR RAILWAY STATION	SITABURDI (INTERCHANGE)	7970	7640	9730
9	SITABURDI (INTERCHANGE)	JHANSI RANI SQUARE	6691	7640	9730
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	4486	7640	9730
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	8460	7640	9730
12	SHANKAR NAGAR SQUARE	LAD CHOWK	6693	7640	9730
13	LAD CHOWK	DHARMPETH COLLEGE	6147	7640	9730
14	DHARMPETH COLLEGE	SUBHASH NAGAR	4472	7640	9730
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	4157	3820	4865
16	RACHNA RING ROAD JN.	VASDEV NAGAR	3828	3820	4865
17	VASDEV NAGAR	BANSI NAGAR	2960	3820	4865
18	BANSI NAGAR	LOKMANYA NAGAR	2400	3820	4865

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 1 : North - South Corridor

Year:	2026
No. of Cars per Train:	3
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973
Headway (min)	4.5

(In 'Automotive Sqre to Congress Nagar' Section)

			Headway (min)	9	(In 'Congress Nagar to Khapari' Section)
S.N	FROM	то	Traffic Demand in PHPDT	PHPDT capacity @ 6p/sqm of standee area	PHPDT capacity @ 8p/sqm of standee area
1	AUTOMOTIVE SQRE	NARI ROAD	3453	10187	12973
2	NARI ROAD	INDORA CHOWK	5115	10187	12973
3	INDORA CHOWK	KADVI CHOWK	6547	10187	12973
4	KADVI CHOWK	GADDI GODAM SQRE	7945	10187	12973
5	GADDI GODAM SQRE	KASTURCHAND PARK	7914	10187	12973
6	KASTURCHAND PARK	ZERO MILE	9379	10187	12973
7	ZERO MILE	SITABURDI	10297	10187	12973
8	SITABURDI	CONGRESS NAGAR	11915	10187	12973
9	CONGRESS NAGAR	RAHATE COLONY	6305	5093	6487
10	RAHATE COLONY	AJNI SQUARE	5338	5093	6487
11	AJNI SQUARE	CHHATRAPATI SQUARE	4641	5093	6487
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	4185	5093	6487
13	JAIPRAKASH NAGAR	UJWAL NAGAR	3861	5093	6487
14	UJWAL NAGAR	AIRPORT	3441	5093	6487
15	AIRPORT	NEW AIRPORT	3193	5093	6487
16	NEW AIRPORT	KHAPARI	2489	5093	6487

Note: Reversal facility required at Congress Nagar.

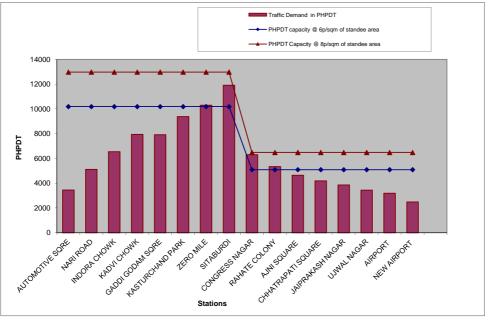


Fig 3.1

Attachment - I/C2

PHPDT Demand and Capacity Chart

Nagpur Metro Rail Network Line 2 : East - West Corridor

Line 2. East - West Corrigon		
Year:	2026	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	5	(In 'Agrasen Chowk to Subhash Nagar' Section)
Headway (min)	10	(In 'Prajapati Nagar to

Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' section)

S.N	FROM	то	Traffic Demand in PHPDT	PHPDT capacity @ 6p/sqm of standee area	PHPDT capacity @ 8p/sqm of standee area
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	549	4584	5838
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	1033	4584	5838
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1578	4584	5838
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	3333	4584	5838
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	4703	4584	5838
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	5572	9168	11676
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	6097	9168	11676
8	NAGPUR RAILWAY STATION	SITABURDI (INTERCHANGE)	8754	9168	11676
9	SITABURDI (INTERCHANGE)	JHANSI RANI SQUARE	7346	9168	11676
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	4912	9168	11676
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	9154	9168	11676
12	SHANKAR NAGAR SQUARE	LAD CHOWK	7275	9168	11676
13	LAD CHOWK	DHARMPETH COLLEGE	6684	9168	11676
14	DHARMPETH COLLEGE	SUBHASH NAGAR	4870	9168	11676
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	4530	4584	5838
16	RACHNA RING ROAD JN.	VASDEV NAGAR	4159	4584	5838
17	VASDEV NAGAR	BANSI NAGAR	3217	4584	5838
18	BANSI NAGAR	LOKMANYA NAGAR	2603	4584	5838

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

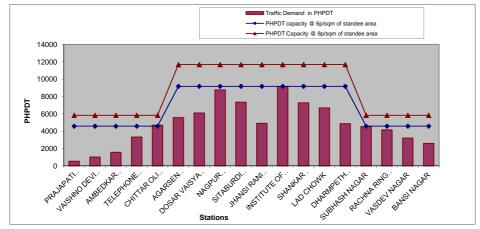


Fig 3.2

Attachment - I/D1

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 1 : North - South Corridor

Year:	2031	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	4	(In 'Automotive Sqre to Congress Nagar' Section)
Headway (min)	8	(In 'Congress Nagar to Khapari' Section)

C N	EDOM	ТО	Troffic Domond		
S.N	FROM	то	Traffic Demand		PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	AUTOMOTIVE SQRE	NARI ROAD	4045	11460	14595
2	NARI ROAD	INDORA CHOWK	5960	11460	14595
3	INDORA CHOWK	KADVI CHOWK	7562	11460	14595
4	KADVI CHOWK	GADDI GODAM SQRE	9098	11460	14595
5	GADDI GODAM SQRE	KASTURCHAND PARK	9092	11460	14595
6	KASTURCHAND PARK	ZERO MILE	10804	11460	14595
7	ZERO MILE	SITABURDI	11631	11460	14595
8	SITABURDI	CONGRESS NAGAR	12934	11460	14595
9	CONGRESS NAGAR	RAHATE COLONY	6918	5730	7298
10	RAHATE COLONY	AJNI SQUARE	5854	5730	7298
11	AJNI SQUARE	CHHATRAPATI SQUARE	5084	5730	7298
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	4590	5730	7298
13	JAIPRAKASH NAGAR	UJWAL NAGAR	4241	5730	7298
14	UJWAL NAGAR	AIRPORT	3787	5730	7298
15	AIRPORT	NEW AIRPORT	3513	5730	7298
16	NEW AIRPORT	KHAPARI	2748	5730	7298

Note: Reversal facility required at Congress Nagar.

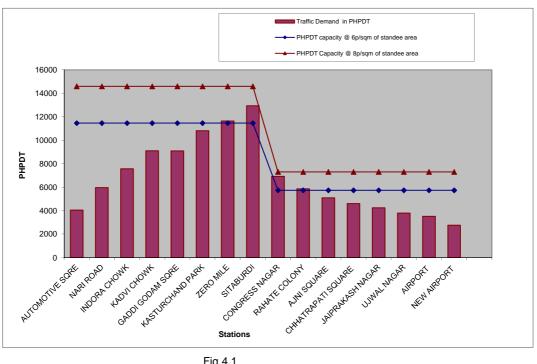


Fig 4.1

Attachment - I/D2

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 2 : East - West Corridor

Year:	2031	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	4.5	(In 'Agrasen Chowk to Subhash Nagar' Section)
Headway (min)	9	(In 'Prajapati Nagar to Agrasen Chowk' Section and

Agrasen Chowk Section and
'Subhash Nagar to Lokmanya
Nagar' section)

					Nagai Section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	585	5093	6487
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	1102	5093	6487
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1685	5093	6487
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	3607	5093	6487
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	5094	5093	6487
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	6037	10187	12973
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	6610	10187	12973
8	NAGPUR RAILWAY	SITABURDI (INTERCHANGE)	9675	10187	12973
	STATION				
9	SITABURDI	JHANSI RANI SQUARE	8188	10187	12973
	(INTERCHANGE)				
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	5458	10187	12973
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	9906	10187	12973
12	SHANKAR NAGAR SQUARE	LAD CHOWK	7898	10187	12973
13	LAD CHOWK	DHARMPETH COLLEGE	7269	10187	12973
14	DHARMPETH COLLEGE	SUBHASH NAGAR	5301	10187	12973
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	4934	5093	6487
16	RACHNA RING ROAD JN.	VASDEV NAGAR	4527	5093	6487
17	VASDEV NAGAR	BANSI NAGAR	3504	5093	6487
18	BANSI NAGAR	LOKMANYA NAGAR	2833	5093	6487

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

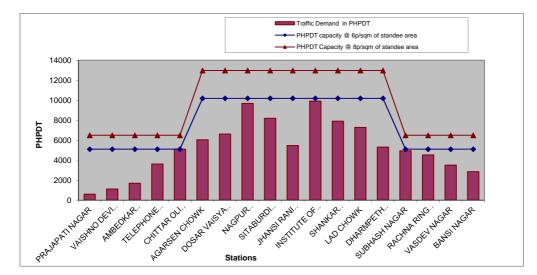


Fig 4.2

Attachment - I/E1

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network

Line 1 : North - South Corridor

Year:	2036	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	3.5	(In 'Automotive Sqre to Congress Nagar' Section)

			Headway (min)	7	(In 'Congress Nagar to Khapari' Section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity
			in PHPDT	@ 6p/sqm of	@ 8p/sqm of
				standee area	standee area
1	AUTOMOTIVE SQRE	NARI ROAD	4611	13097	16680
2	NARI ROAD	INDORA CHOWK	6792	13097	16680
3	INDORA CHOWK	KADVI CHOWK	8609	13097	16680
4	KADVI CHOWK	GADDI GODAM SQRE	10325	13097	16680
5	GADDI GODAM SQRE	KASTURCHAND PARK	10333	13097	16680
6	KASTURCHAND PARK	ZERO MILE	12132	13097	16680
7	ZERO MILE	SITABURDI	13002	13097	16680
8	SITABURDI	CONGRESS NAGAR	14286	13097	16680
9	CONGRESS NAGAR	RAHATE COLONY	7688	6549	8340
10	RAHATE COLONY	AJNI SQUARE	6476	6549	8340
11	AJNI SQUARE	CHHATRAPATI SQUARE	5607	6549	8340
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	5070	6549	8340
13	JAIPRAKASH NAGAR	UJWAL NAGAR	4680	6549	8340
14	UJWAL NAGAR	AIRPORT	4177	6549	8340
15	AIRPORT	NEW AIRPORT	3878	6549	8340
16	NEW AIRPORT	KHAPARI	3049	6549	8340

Note: Reversal facility required at Congress Nagar.

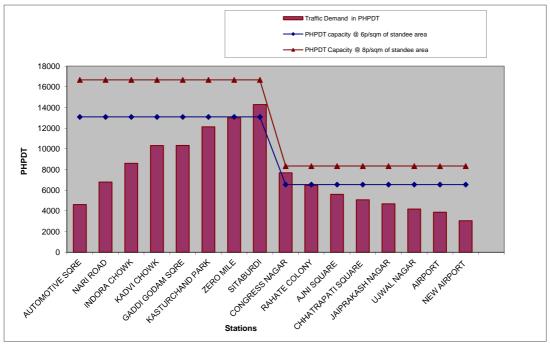


Fig 5.1

Attachment - I/E2

PHPDT Demand and Capacity Chart

Nagpur Metro Rail Network Line 2 : East - West Corridor

Line 2. Last - West Connuol		
Year:	2036	
No. of Cars per Train:	3	
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764	
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973	
Headway (min)	4	(In 'Agrasen Chowk to Subhash Nagar' Section)
Headway (min)	8	(In 'Prajapati Nagar to

Agrasen Chowk' Section and 'Subhash Nagar to Lokmanya Nagar' section)

S.N	FROM	то	Traffic Demand in PHPDT	PHPDT capacity @ 6p/sqm of standee area	PHPDT capacity @ 8p/sqm of standee area
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	621	5730	7298
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	1174	5730	7298
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1803	5730	7298
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	4003	5730	7298
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	5542	5730	7298
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	6544	11460	14595
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	7540	11460	14595
8	NAGPUR RAILWAY STATION	SITABURDI (INTERCHANGE)	10748	11460	14595
9	SITABURDI (INTERCHANGE)	JHANSI RANI SQUARE	9050	11460	14595
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	6001	11460	14595
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	10716	11460	14595
12	SHANKAR NAGAR SQUARE	LAD CHOWK	8610	11460	14595
13	LAD CHOWK	DHARMPETH COLLEGE	7936	11460	14595
14	DHARMPETH COLLEGE	SUBHASH NAGAR	5808	11460	14595
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	5410	5730	7298
16	RACHNA RING ROAD JN.	VASDEV NAGAR	4932	5730	7298
17	VASDEV NAGAR	BANSI NAGAR	3813	5730	7298
18	BANSI NAGAR	LOKMANYA NAGAR	3082	5730	7298

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

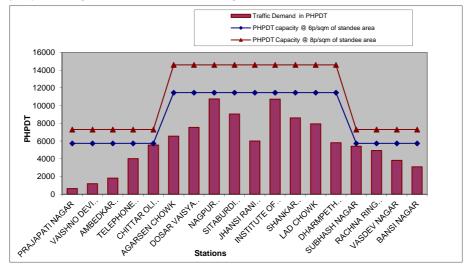


Fig 5.2

PHPDT Demand and Capacity Chart

Nagpur Metro Rail Network Line 1 : North - South Corridor

Year:	2041
No. of Cars per Train:	3
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973
Headway (min)	3

Headway (min)

6 Congress Na 6 (In 'Congre

(In 'Automotive Sqre to Congress Nagar' Section) (In 'Congress Nagar to Khapari' Section)

	-				Khapari' Section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
1	AUTOMOTIVE SQRE	NARI ROAD	5274	15280	19460
2	NARI ROAD	INDORA CHOWK	7815	15280	19460
3	INDORA CHOWK	KADVI CHOWK	9833	15280	19460
4	KADVI CHOWK	GADDI GODAM SQRE	11719	15280	19460
5	GADDI GODAM SQRE	KASTURCHAND PARK	11743	15280	19460
6	KASTURCHAND PARK	ZERO MILE	13724	15280	19460
7	ZERO MILE	SITABURDI	14572	15280	19460
8	SITABURDI	CONGRESS NAGAR	15729	15280	19460
9	CONGRESS NAGAR	RAHATE COLONY	8477	7640	9730
10	RAHATE COLONY	AJNI SQUARE	7149	7640	9730
11	AJNI SQUARE	CHHATRAPATI SQUARE	6185	7640	9730
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	5608	7640	9730
13	JAIPRAKASH NAGAR	UJWAL NAGAR	5179	7640	9730
14	UJWAL NAGAR	AIRPORT	4624	7640	9730
15	AIRPORT	NEW AIRPORT	4302	7640	9730
16	NEW AIRPORT	KHAPARI	3660	7640	9730

Note: Reversal facility required at Congress Nagar.

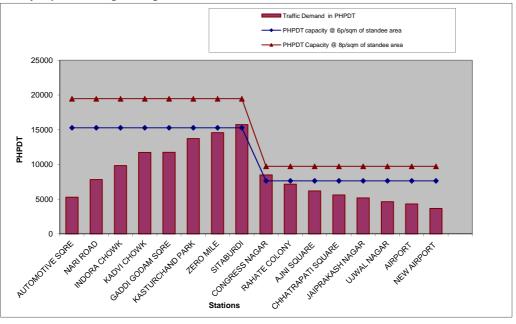
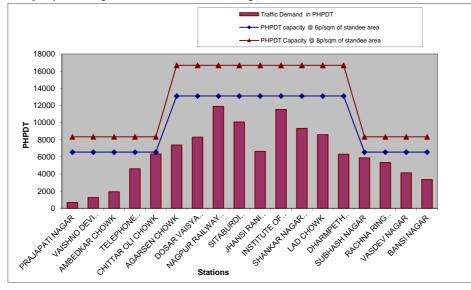


Fig 6.1

Attachment - I/F2

PHPDT Demand and Capacity Chart Nagpur Metro Rail Network


Line 2 : East - West Corridor

Year:	2041
No. of Cars per Train:	3
Passenger Capacity @ 6 persons/sqm of a 3-Car Train:	764
Passenger Capacity @ 8 persons/sqm of a 3-Car Train:	973
Headway (min)	3.5
Headway (min)	7

(In 'Agrasen Chowk to
Subhash Nagar' Section)
(In 'Prajapati Nagar to
Agrasen Chowk' Section and
'Subhash Nagar to Lokmanya
Nagar' section)

					Nagar' section)
S.N	FROM	то	Traffic Demand	PHPDT capacity	PHPDT capacity @
			in PHPDT	@ 6p/sqm of	8p/sqm of standee
				standee area	area
			050	05.40	00.10
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	659	6549	8340
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	1250	6549	8340
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1925	6549	8340
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	4601	6549	8340
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	6330	6549	8340
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	7386	13097	16680
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY	8297	13097	16680
		STATION			
8	NAGPUR RAILWAY	SITABURDI	11882	13097	16680
	STATION	(INTERCHANGE)			
9	SITABURDI	JHANSI RANI SQUARE	10064	13097	16680
	(INTERCHANGE)				
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	6640	13097	16680
11	INSTITUTE OF	SHANKAR NAGAR SQUARE	11528	13097	16680
	ENGINEERS				
12	SHANKAR NAGAR	LAD CHOWK	9314	13097	16680
	SQUARE				
13	LAD CHOWK	DHARMPETH COLLEGE	8588	13097	16680
14	DHARMPETH COLLEGE	SUBHASH NAGAR	6297	13097	16680
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	5871	6549	8340
16	RACHNA RING ROAD JN.	VASDEV NAGAR	5341	6549	8340
17	VASDEV NAGAR	BANSI NAGAR	4136	6549	8340
18	BANSI NAGAR	LOKMANYA NAGAR	3346	6549	8340

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

TABLE 1.1 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2016 Configuration: 3 Car

Headway(min): 6

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	24	3	2
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	6	10	10
9 to 10	6	10	10
10 to 11	6	10	10
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	6	10	10
18 to 19	6	10	10
19 to 20	6	10	10
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	2	3
23 to 24	30	2	2
Total No. of train trips per direction		108	108
per day			

TABLE 1.2 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2021

Configuration: 3 Car

Headway(min): 5

	Headway in	No. of Tra	ains per day
Time of Day	Minutes	UP	DN
5 to 6	16	4	3
6 to 7	12	5	5
7 to 8	8	8	7
8 to 9	5	12	12
9 to 10	5	12	12
10 to 11	5	12	12
11 to12	8	7	7
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	8	7	8
17 to 18	5	12	12
18 to 19	5	12	12
19 to 20	5	12	12
20 to 21	8	7	7
21 to 22	12	5	5
22 to 23	16	3	4
23 to 24	20	3	3
Total No. of train trips per direction per day		138	138

TABLE 1.3 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2026 Configuration: 3 Car

Headway(min): 4.5

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	16	3	4
6 to 7	12	5	5
7 to 8	6	10	10
8 to 9	4.5	13	14
9 to 10	4.5	14	13
10 to 11	4.5	13	14
11 to12	6	10	10
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	6	10	10
17 to 18	4.5	14	13
18 to 19	4.5	13	14
19 to 20	4.5	14	13
20 to 21	6	10	10
21 to 22	12	5	5
22 to 23	16	4	3
23 to 24	20	3	3
Total No. of train			
trips per direction		158	158
per day			

TABLE 1.4 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2031

Configuration: 3 Car

Headway(min): 4

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	16	4	4
6 to 7	12	5	5
7 to 8	6	10	10
8 to 9	4	15	15
9 to 10	4	15	15
10 to 11	4	15	15
11 to12	6	10	10
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	6	10	10
17 to 18	4	15	15
18 to 19	4	15	15
19 to 20	4	15	15
20 to 21	6	10	10
21 to 22	12	5	5
22 to 23	16	4	4
23 to 24	20	3	3
Total No. of train trips per direction per day		168	168

TABLE 1.5 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2036

Configuration: 3 Car

Headway(min): 3.5

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	12	5	5
6 to 7	10	6	6
7 to 8	5	12	12
8 to 9	3.5	17	18
9 to 10	3.5	17	17
10 to 11	3.5	17	18
11 to12	5	12	12
12 to 13	10	6	6
13 to 14	12	5	5
14 to 15	12	5	5
15 to 16	10	6	6
16 to 17	5	12	12
17 to 18	3.5	18	17
18 to 19	3.5	17	17
19 to 20	3.5	18	17
20 to 21	5	12	12
21 to 22	10	6	6
22 to 23	12	5	5
23 to 24	15	4	4
Total No. of train trips per direction per day		200	200

TABLE 1.6 A

Hourly Train Operation Plan for AUTOMOTIVE SQRE to CONGRESS NAGAR Year: 2041

Configuration: 3 Car

Headway(min): 3

Time of Day			rains per day	
	Minutes	UP	DN	
5 to 6	12	5	5	
6 to 7	10	6	6	
7 to 8	5	12	12	
8 to 9	3	20	20	
9 to 10	3	20	20	
10 to 11	3	20	20	
11 to12	5	12	12	
12 to 13	10	6	6	
13 to 14	12	5	5	
14 to 15	12	5	5	
15 to 16	10	6	6	
16 to 17	5	12	12	
17 to 18	3	20	20	
18 to 19	3	20	20	
19 to 20	3	20	20	
20 to 21	5	12	12	
21 to 22	10	6	6	
22 to 23	12	5	5	
23 to 24	15	4	4	
Total No. of train trips per direction per day		216	216	

Attachment II

Nagpur Metro Rail Network Line 1 : North - South Corridor

TABLE 1.1 B

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2016 Configuration: 3 Car Headway(min): 12

Time of Day	Headway in Minutes	No. of Trains per day	
		UP	DN
5 to 6	48	1	1
6 to 7	40	2	1
7 to 8	20	3	3
8 to 9	12	5	5
9 to 10	12	5	5
10 to 11	12	5	5
11 to12	20	3	3
12 to 13	40	1	2
13 to 14	48	1	2
14 to 15	48	2	1
15 to 16	40	2	1
16 to 17	20	3	3
17 to 18	12	5	5
18 to 19	12	5	5
19 to 20	12	5	5
20 to 21	20	3	3
21 to 22	40	1	2
22 to 23	48	1	1
23 to 24	60	1	1
Total No. of train trips per direction per day		54	54

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2021 Configuration: 3 Car Headway(min): 10

Time of Day	Headway in Minutes	No. of Trains per day	
		UP	DN
5 to 6	32	2	2
6 to 7	24	3	2
7 to 8	16	4	3
8 to 9	10	6	6
9 to 10	10	6	6
10 to 11	10	6	6
11 to12	16	4	3
12 to 13	24	2	3
13 to 14	32	2	1
14 to 15	32	1	2
15 to 16	24	3	2
16 to 17	16	3	4
17 to 18	10	6	6
18 to 19	10	6	6
19 to 20	10	6	6
20 to 21	16	3	4
21 to 22	24	2	3
22 to 23	32	2	2
23 to 24	40	2	2
Total No. of train trips per direction per day		69	69

TABLE 1.3 B

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2026 Configuration: 3 Car Headway(min): 9

Time of Day	Headway in Minutes	No. of Trains per day	
		UP	DN
5 to 6	32	2	2
6 to 7	24	3	2
7 to 8	12	5	5
8 to 9	9	6	7
9 to 10	9	7	6
10 to 11	9	6	7
11 to12	12	5	5
12 to 13	24	2	3
13 to 14	32	2	2
14 to 15	32	2	2
15 to 16	24	3	2
16 to 17	12	5	5
17 to 18	9	7	6
18 to 19	9	6	7
19 to 20	9	7	6
20 to 21	12	5	5
21 to 22	24	2	3
22 to 23	32	2	2
23 to 24	40	2	2
Total No. of train trips per direction per day		79	79

Attachment II

Nagpur Metro Rail Network Line 1 : North - South Corridor TABLE 1.4 B

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2031 Configuration: 3 Car Headway(min): 8

Time of Day	Headway in Minutes	No. of Trains per day	
		UP	DN
5 to 6	32	2	2
6 to 7	24	3	2
7 to 8	12	5	5
8 to 9	8	7	8
9 to 10	8	8	7
10 to 11	8	7	8
11 to12	12	5	5
12 to 13	24	2	3
13 to 14	32	2	1
14 to 15	32	1	2
15 to 16	24	3	2
16 to 17	12	5	5
17 to 18	8	8	7
18 to 19	8	7	8
19 to 20	8	8	7
20 to 21	12	5	5
21 to 22	24	2	3
22 to 23	32	2	2
23 to 24	40	2	2
Total No. of train trips per direction per day		84	84

Nagpur Metro Rail Network Line 1 : North - South Corridor TABLE 1.5 B

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2036 Configuration: 3 Car Headway(min): 7

Time of Day		No. of Tra	ins per day
	Headway in Minutes	UP	DN
5 to 6	24	3	2
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	7	8	9
9 to 10	7	9	9
10 to 11	7	8	9
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	2	3
14 to 15	24	3	2
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	7	9	8
18 to 19	7	9	9
19 to 20	7	9	8
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	2	3
23 to 24	30	2	2
Total No. of train trips per direction per day		100	100

Nagpur Metro Rail Network Line 1 : North - South Corridor TABLE 1.6 B

Hourly Train Operation Plan for CONGRESS NAGAR to KHAPARI Year: 2041 Configuration: 3 Car

Headway(min): 6

Time of Day	Headway in Minutes	No. of Trains per day	
Time of Day		UP	DN
5 to 6	24	2	3
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	6	10	10
9 to 10	6	10	10
10 to 11	6	10	10
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	6	10	10
18 to 19	6	10	10
19 to 20	6	10	10
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	3	2
23 to 24	30	2	2
Total No. of train trips per direction per day		108	108

Nagpur Metro Rail Network Line 2 : East - West Corridor

TABLE 1.7 A

Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2016 Configuration: 3 Car

Headway	(min)):	13	
---------	-------	----	----	--

Time of Day	Headway in Minutes	No. of Trai	ins per day
Time of Day		UP	DN
5 to 6	48	1	1
6 to 7	40	2	1
7 to 8	20	3	3
8 to 9	13	4	5
9 to 10	13	5	4
10 to 11	13	4	5
11 to12	20	3	3
12 to 13	40	1	2
13 to 14	48	1	2
14 to 15	48	2	1
15 to 16	40	2	1
16 to 17	20	3	3
17 to 18	13	5	4
18 to 19	13	4	5
19 to 20	13	5	4
20 to 21	20	3	3
21 to 22	40	1	2
22 to 23	48	1	1
23 to 24	60	1	1
Total No. of train trips per direction		51	51
per day			

TABLE 1.8 A Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2021 Configuration: 3 Car Headway(min): 12

	Headway in Minutes	No. of Trains per day	
Time of Day		UP	DN
5 to 6	48	1	1
6 to 7	40	2	1
7 to 8	20	3	3
8 to 9	12	5	5
9 to 10	12	5	5
10 to 11	12	5	5
11 to12	20	3	3
12 to 13	40	1	2
13 to 14	48	2	1
14 to 15	48	1	2
15 to 16	40	2	1
16 to 17	20	3	3
17 to 18	12	5	5
18 to 19	12	5	5
19 to 20	12	5	5
20 to 21	20	3	3
21 to 22	40	1	2
22 to 23	48	1	1
23 to 24	60	1	1
Total No. of train trips per direction per day		54	54

TABLE 1.9 A

Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2026 Configuration: 3 Car Headway(min): 10

Headway(min):		No. of Tro	ine por dov
Time of Day	Headway in Minutes		ins per day
	-	UP	DN
5 to 6	32	2	2
6 to 7	24	3	2
7 to 8	16	4	3
8 to 9	10	6	6
9 to 10	10	6	6
10 to 11	10	6	6
11 to12	16	4	3
12 to 13	24	2	3
13 to 14	32	2	2
14 to 15	32	2	2
15 to 16	24	3	2
16 to 17	16	3	4
17 to 18	10	6	6
18 to 19	10	6	6
19 to 20	10	6	6
20 to 21	16	3	4
21 to 22	24	2	3
22 to 23	32	2	2
23 to 24	40	2	2
Total No. of train trips per direction per day		70	70

TABLE 1.10 A

Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2031 Configuration: 3 Car Headway(min): 9

Headway(min):	9		
Time of Day	Headway in Minutes	No. of Trains per day	
Time of Day		UP	DN
5 to 6	32	1	2
6 to 7	24	3	2
7 to 8	12	5	5
8 to 9	9	6	6
9 to 10	9	6	6
10 to 11	9	6	6
11 to12	12	5	5
12 to 13	24	2	3
13 to 14	32	2	1
14 to 15	32	1	2
15 to 16	24	3	2
16 to 17	12	5	5
17 to 18	9	6	6
18 to 19	9	6	6
19 to 20	9	6	6
20 to 21	12	5	5
21 to 22	24	2	3
22 to 23	32	2	1
23 to 24	40	2	2
Total No. of train			
trips per direction		74	74
per day			

TABLE 1.11 A

Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2036 Configuration: 3 Car Headway(min): 8

		No. of Trains per day	
Time of Day	Headway in Minutes	UP	DN
5 to 6	32	2	1
6 to 7	24	3	2
7 to 8	12	5	5
8 to 9	8	7	8
9 to 10	8	8	7
10 to 11	8	7	8
11 to12	12	5	5
12 to 13	24	2	3
13 to 14	32	1	2
14 to 15	32	2	1
15 to 16	24	3	2
16 to 17	12	5	5
17 to 18	8	8	7
18 to 19	8	7	8
19 to 20	8	8	7
20 to 21	12	5	5
21 to 22	24	2	3
22 to 23	32	1	2
23 to 24	40	2	2
Total No. of train trips per direction per day		83	83

TABLE 1.12 A

Hourly Train Operation Plan for PRAJAPATI NAGAR to AGARSEN CHOWK Year: 2041 Configuration: 3 Car Headway(min): 7

Time of Day	Headway in Minutes	No. of Trains per day	
Time of Day		UP	DN
5 to 6	24	2	3
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	7	8	9
9 to 10	7	9	8
10 to 11	7	8	9
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	7	9	8
18 to 19	7	8	9
19 to 20	7	9	8
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	3	2
23 to 24	30	2	2
Total No. of train trips per direction per day		99	99

Nagpur Metro Rail Network Line 2 : East - West Corridor

TABLE 1.7 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2016 Configuration: 3 Car

Headway(min): 6.5

Time of Day	Headway in	No. of Tra	ains per day
	Minutes	UP	DN
5 to 6	24	3	2
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	6.5	9	9
9 to 10	6.5	9	9
10 to 11	6.5	9	9
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	6.5	9	9
18 to 19	6.5	9	9
19 to 20	6.5	9	9
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	2	3
23 to 24	30	2	2
Total No. of train trips per direction per day		102	102

TABLE 1.8 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2021 Configuration: 3 Car Headway(min): 6

Time of Day	Headway in	No. of Tra	ains per day
	Minutes	UP	DN
5 to 6	24	3	2
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	6	10	10
9 to 10	6	10	10
10 to 11	6	10	10
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	6	10	10
18 to 19	6	10	10
19 to 20	6	10	10
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	2	3 2
23 to 24	30	2	2
Total No. of train trips per direction		108	108
per day			

TABLE 1.9 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2026 Configuration: 3 Car

Headway(min): 5

Time of Day	Headway in	No. of Tra	ins per day
	Minutes	UP	DN
5 to 6	16	4	4
6 to 7	12	5	5
7 to 8	8	8	7
8 to 9	5	12	12
9 to 10	5	12	12
10 to 11	5	12	12
11 to12	8	8	7
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	8	7	8
17 to 18	5	12	12
18 to 19	5	12	12
19 to 20	5	12	12
20 to 21	8	7	8
21 to 22	12	5	5
22 to 23	16	4	4
23 to 24	20	3	3
Total No. of train trips per direction per day		140	140

TABLE 1.10 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2031 Configuration: 3 Car

Headway(min): 4.5

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	16	3	4
6 to 7	12	5	5
7 to 8	6	10	10
8 to 9	4.5	14	13
9 to 10	4.5	13	14
10 to 11	4.5	14	13
11 to12	6	10	10
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	6	10	10
17 to 18	4.5	13	14
18 to 19	4.5	14	13
19 to 20	4.5	13	14
20 to 21	6	10	10
21 to 22	12	5	5
22 to 23	16	4	3
23 to 24	20	3	3
Total No. of train trips per direction per day		158	158

TABLE 1.11 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2036 Configuration: 3 Car Headway(min): 4

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	16	3	3
6 to 7	12	5	5
7 to 8	6	10	10
8 to 9	4	15	15
9 to 10	4	15	15
10 to 11	4	15	15
11 to12	6	10	10
12 to 13	12	5	5
13 to 14	16	4	3
14 to 15	16	3	4
15 to 16	12	5	5
16 to 17	6	10	10
17 to 18	4	15	15
18 to 19	4	15	15
19 to 20	4	15	15
20 to 21	6	10	10
21 to 22	12	5	5
22 to 23	16	3	3
23 to 24	20	3	3
Total No. of train trips per direction per day		166	166

TABLE 1.12 B

Hourly Train Operation Plan for AGARSEN CHOWK to SUBHASH NAGAR Year: 2041 Configuration: 3 Car Headway(min): 3.5

	Headway in	No. of Tra	ins per day
Time of Day	Minutes	UP	DN
5 to 6	12	5	5
6 to 7	10	6	6
7 to 8	5	12	12
8 to 9	3.5	17	17
9 to 10	3.5	17	17
10 to 11	3.5	17	17
11 to12	5	12	12
12 to 13	10	6	6
13 to 14	12	5	5
14 to 15	12	5	5
15 to 16	10	6	6
16 to 17	5	12	12
17 to 18	3.5	17	17
18 to 19	3.5	17	17
19 to 20	3.5	17	17
20 to 21	5	12	12
21 to 22	10	6	6
22 to 23	12	5	5
23 to 24	15	4	4
Total No. of train trips per direction per day		198	198

Nagpur Metro Rail Network Line 2 : East - West Corridor

TABLE 1.7 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2016 Configuration: 3 Car

Headway	(min)):	13	
---------	-------	----	----	--

Time of Day	Hoodway in Minutas	No. of Trai	ns per day
Time of Day	Headway in Minutes	UP	DN
5 to 6	48	1	1
6 to 7	40	2	1
7 to 8	20	3	3
8 to 9	13	4	5
9 to 10	13	5	4
10 to 11	13	4	5
11 to12	20	3	3
12 to 13	40	1	2
13 to 14	48	1	2
14 to 15	48	2	1
15 to 16	40	2	1
16 to 17	20	3	3
17 to 18	13	5	4
18 to 19	13	4	5
19 to 20	13	5	4
20 to 21	20	3	3
21 to 22	40	1	2
22 to 23	48	1	1
23 to 24	60	1	1
Total No. of train		51	51
trips per direction		JI	51
per day			

TABLE 1.8 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2021 Configuration: 3 Car Headway(min): 12

Time of Day	Headway in Minutes	No. of Tra	ins per day
Time of Day	Headway in Minutes	UP	DN
5 to 6	48	1	1
6 to 7	40	2	1
7 to 8	20	3	3
8 to 9	12	5	5
9 to 10	12	5	5
10 to 11	12	5	5
11 to12	20	3	3
12 to 13	40	1	2
13 to 14	48	2	1
14 to 15	48	1	2
15 to 16	40	2	1
16 to 17	20	3	3
17 to 18	12	5	5
18 to 19	12	5	5
19 to 20	12	5	5
20 to 21	20	3	3
21 to 22	40	1	2
22 to 23	48	1	1
23 to 24	60	1	1
Total No. of train trips per direction per day		54	54

TABLE 1.9 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2026 Configuration: 3 Car Headway(min): 10

		No. of Tra	ins per day
Time of Day	Headway in Minutes UP		DN
5 to 6	32	2	2
6 to 7	24	3	2
7 to 8	16	4	3
8 to 9	10	6	6
9 to 10	10	6	6
10 to 11	10	6	6
11 to12	16	4	3
12 to 13	24	2	3
13 to 14	32	2	2
14 to 15	32	2	2
15 to 16	24	3	2
16 to 17	16	3	4
17 to 18	10	6	6
18 to 19	10	6	6
19 to 20	10	6	6
20 to 21	16	3	4
21 to 22	24	2	3
22 to 23	32	2	2
23 to 24	40	2	2
Total No. of train trips per direction per day		70	70

TABLE 1.10 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2031 Configuration: 3 Car Headway(min): 9

Headway(min):	9		
Time of Day	Headway in Minutes	No. of Tra	iins per day
Time of Day	neadway in Minutes	UP	DN
5 to 6	32	1	2
6 to 7	24	3	2
7 to 8	12	5	5
8 to 9	9	6	6
9 to 10	9	6	6
10 to 11	9	6	6
11 to12	12	5	5
12 to 13	24	2	3
13 to 14	32	2	1
14 to 15	32	1	2
15 to 16	24	3	2
16 to 17	12	5	5
17 to 18	9	6	6
18 to 19	9	6	6
19 to 20	9	6	6
20 to 21	12	5	5
21 to 22	24	2	3
22 to 23	32	2	1
23 to 24	40	2	2
Total No. of train			
trips per direction		74	74
per day			
per uay			

TABLE 1.11 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2036 Configuration: 3 Car Headway(min): 8

Time of Day	Headway in Minutes	No. of Trains per day		
Time of Day	Headway in Minutes	UP	DN	
5 to 6	32	2	1	
6 to 7	24	3	2	
7 to 8	12	5	5	
8 to 9	8	7	8	
9 to 10	8	8	7	
10 to 11	8	7	8	
11 to12	12	5	5	
12 to 13	24	2	3	
13 to 14	32	1	2	
14 to 15	32	2	1	
15 to 16	24	3	2	
16 to 17	12	5	5	
17 to 18	8	8	7	
18 to 19	8	7	8	
19 to 20	8	8	7	
20 to 21	12	5	5	
21 to 22	24	2	3	
22 to 23	32	1	2	
23 to 24	40	2	2	
Total No. of train trips per direction per day		83	83	

TABLE 1.12 C

Hourly Train Operation Plan for SUBHASH NAGAR to LOKMANYA NAGAR Year: 2041 Configuration: 3 Car Headway(min): 7

Time of Day	Headway in Minutes	No. of Trai	ns per day
Time of Day			DN
5 to 6	24	2	3
6 to 7	20	3	3
7 to 8	10	6	6
8 to 9	7	8	9
9 to 10	7	9	8
10 to 11	7	8	9
11 to12	10	6	6
12 to 13	20	3	3
13 to 14	24	3	2
14 to 15	24	2	3
15 to 16	20	3	3
16 to 17	10	6	6
17 to 18	7	9	8
18 to 19	7	8	9
19 to 20	7	9	8
20 to 21	10	6	6
21 to 22	20	3	3
22 to 23	24	3	2
23 to 24	30	2	2
Total No. of train trips per direction per day		99	99

TABLE 2.1 Line 1 : North - South Corridor PHPDT for the Year 2016

S.No	From Station	To Station	Maximum PHPDT	Directional Split to KHAPARI	Directional Split to AUTOMOTIV E SQRE
1	AUTOMOTIVE SQRE	NARI ROAD	2561	50%	50%
2	NARI ROAD	INDORA CHOWK	3754	50%	50%
3	INDORA CHOWK	KADVI CHOWK	4885	50%	50%
4	KADVI CHOWK	GADDI GODAM SQRE	6039	50%	50%
5	GADDI GODAM SQRE	KASTURCHAND PARK	6059	50%	50%
6	KASTURCHAND PARK	ZERO MILE	7326	50%	50%
7	ZERO MILE	SITABURDI	8272	50%	50%
8	SITABURDI	CONGRESS NAGAR	10089	50%	50%
9	CONGRESS NAGAR	RAHATE COLONY	5288	50%	50%
10	RAHATE COLONY	AJNI SQUARE	4513	50%	50%
11	AJNI SQUARE	CHHATRAPATI SQUARE	3935	50%	50%
12	CHHATRAPATI SQUARE	JAIPRAKASH NAGAR	3561	50%	50%
13	JAIPRAKASH NAGAR	UJWAL NAGAR	3289	50%	50%
14	UJWAL NAGAR	AIRPORT	2939	50%	50%
15	AIRPORT	NEW AIRPORT	2735	50%	50%
16	NEW AIRPORT	KHAPARI	2140	50%	50%

TABLE 2.2Line 2 : East - West CorridorPHPDT for the Year 2016

S.No	From Station	To Station	Maximum PHPDT	Directional Split to LOKMANYA NAGAR	Directional Split to PRAJAPATI NAGAR
1	PRAJAPATI NAGAR	VAISHNO DEVI CHOWK	481	50%	50%
2	VAISHNO DEVI CHOWK	AMBEDKAR CHOWK	903	50%	50%
3	AMBEDKAR CHOWK	TELEPHONE EXCHANGE	1378	50%	50%
4	TELEPHONE EXCHANGE	CHITTAR OLI CHOWK	2919	50%	50%
5	CHITTAR OLI CHOWK	AGARSEN CHOWK	4090	50%	50%
6	AGARSEN CHOWK	DOSAR VAISYA CHOWK	4843	50%	50%
7	DOSAR VAISYA CHOWK	NAGPUR RAILWAY STATION	5288	50%	50%
8	NAGPUR RAILWAY STATION	SITABURDI (INTERCHANGE)	7341	50%	50%
9	SITABURDI (INTERCHANGE)	JHANSI RANI SQUARE	6141	50%	50%
10	JHANSI RANI SQUARE	INSTITUTE OF ENGINEERS	4038	50%	50%
11	INSTITUTE OF ENGINEERS	SHANKAR NAGAR SQUARE	7746	50%	50%
12	SHANKAR NAGAR SQUARE	LAD CHOWK	6114	50%	50%
13	LAD CHOWK	DHARMPETH COLLEGE	5601	50%	50%
14	DHARMPETH COLLEGE	SUBHASH NAGAR	4072	50%	50%
15	SUBHASH NAGAR	RACHNA RING ROAD JN.	3787	50%	50%
16	RACHNA RING ROAD JN.	VASDEV NAGAR	3494	50%	50%
17	VASDEV NAGAR	BANSI NAGAR	2714	50%	50%
18	BANSI NAGAR	LOKMANYA NAGAR	2212	50%	50%

TABLE 3.1Vehicle KilometerNagpur Metro Rail NetworkLine 1 : North - South Corridor

Year	20	16	20	21	20	26	203	1	203	36	20	41
Section	AUTOMOTIVE SQRE to CONGRESS NAGAR	CONGRESS NAGAR to KHAPARI	AUTOMOTIVE SQRE to CONGRESS NAGAR	CONGRESS NAGAR to KHAPARI	AUTOMOTIVE SQRE to CONGRESS NAGAR	CONGRESS NAGAR to KHAPARI	AUTOMOTIVE SQRE to CONGRESS NAGAR	CONGRES S NAGAR to KHAPARI	AUTOMOTIV E SQRE to CONGRESS NAGAR	CONGRES S NAGAR to KHAPARI	VE SQRE to	
Section Length	7.90	10.56	7.90	10.56	7.90	10.56	7.90	10.56	7.90	10.56	7.90	10.56
No of cars per Train	3	3	3	3	3	3	3	3	3	3	3	3
No of working Days in a year	340	340	340	340	340	340	340	340	340	340	340	340
Number of Trains per day each Way	108	54	138	69	158	79	168	84	200	100	216	108
Daily Train -KM	1706	1141	2180	1458	2496	1669	2653	1775	3159	2113	3412	2282
Annual Train - KM (10 ⁵)	5.80	3.88	7.41	4.96	8.48	5.67	9.02	6.03	10.74	7.18	11.60	7.76
Annual Vehicle - KM (10 ⁵)	17.40	11.64	22.23	14.87	25.45	17.02	27.07	18.10	32.22	21.55	34.80	23.27

Attachment IV

TABLE 3.2 Vehicle Kilometer Nagpur Metro Rail Network Line 2 : East - West Corridor

Year		2016			2021			2026		2	2031			2036			2041	
Section	PRAJAPATI NAGAR to AGARSEN CHOWK	AGARSEN CHOWK to SUBHASH NAGAR	SUBHASH NAGAR to LOKMANYA NAGAR	PRAJAPATI NAGAR to AGARSEN CHOWK	AGARSEN CHOWK to SUBHASH NAGAR	SUBHASH NAGAR to LOKMANYA NAGAR	PRAJAPATI NAGAR to AGARSEN CHOWK	AGARSEN CHOWK to SUBHASH NAGAR	SUBHASH NAGAR to LOKMANYA NAGAR	PRAJAPATI NAGAR to AGARSEN CHOWK	CHOWK to	SUBHASH NAGAR to LOKMANY A NAGAR	PRAJAPATI NAGAR to AGARSEN CHOWK	AGARSEN CHOWK to SUBHASH NAGAR	NAGAR to	NAGAR to	AGARSEN CHOWK to SUBHASH NAGAR	NAGAR to
Section Length	4.76	8.19	4.48	4.76	8.19	4.48	4.76	8.19	4.48	4.76	8.19	4.48	4.76	8.19	4.48	4.76	8.19	4.48
No of cars per Train	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
No of working Days in a year	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340
Number of Trains per day each Way	51	102	51	54	108	54	70	140	70	74	158	74	83	166	83	99	198	99
Daily Train -KM	485	1670	457	514	1768	484	666	2292	627	704	2587	663	790	2718	743	942	3242	886
Annual Train - KM (10⁵)	1.65	5.68	1.55	1.75	6.01	1.64	2.27	7.79	2.13	2.40	8.80	2.25	2.69	9.24	2.53	3.20	11.02	3.01
Annual Vehicle - KM (10 ⁵)	4.95	17.04	4.66	5.24	18.04	4.93	6.80	23.38	6.39	7.19	26.39	6.76	8.06	27.73	7.58	9.61	33.07	9.04

Attachment IV

Line 1 : North - South Corridor, Year : 2016

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	12	6	1	1	8	3	24
Automotive Sqre to Congress Nagar	7.90	32.00	12	3	0	0	3	3	9
				9	1	1	11		33

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Automotive Sqre to	6	11 Rakes of 3	33
Congress Nagar		cars	
Congress Nagar to Khapari	12		
Total Turn Round Time(min)	6		

Line 1 : North - South Corridor, Year : 2021

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	10	7	1	1	9	3	27
Automotive Sqre to Congress Nagar	7.90	32.00	10	4	0	0	4	3	12
				11	1	1	13		39

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Automotive Sqre to	5	13 Rakes of 3	39
Congress Nagar		cars	
Congress Nagar to Khapari	10		
Total Turn Round Time(min)	6	L	

Total Turn Round Time(min)

Line 1 : North - South Corridor, Year : 2026

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
	. ,		. ,		Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	9	8	1	1	10	3	30
Automotive Sqre to Congress Nagar	7.90	32.00	9	4	0	1	5	3	15
				12	1	2	15		45

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Automotive Sqre to	4.5	15 Rakes of 3	45
Congress Nagar		cars	
Congress Nagar to Khapari	9		

6

Line 1 : North - South Corridor, Year : 2031

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	8	9	1	1	11	3	33
Automotive Sqre to Congress Nagar	7.90	32.00	8	5	0	1	6	3	18
				14	1	2	17		51

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Automotive Sqre to	4	17 Rakes of 3	51
Congress Nagar		cars	
Congress Nagar to Khapari	8		

6

Total Turn Round Time(min)

Line 1 : North - South Corridor, Year : 2036

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	7	11	1	1	13	3	39
Automotive Sqre to Congress Nagar	7.90	32.00	7	6	0	1	7	3	21
				17	1	2	20		60

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Automotive Sqre to	3.5	20 Rakes of 3	60
Congress Nagar		cars	
Congress Nagar to Khapari	7		
Total Turn Round Time(min)	6		

Total Turn Round Time(min)

Line 1 : North - South Corridor, Year : 2041

	e en naenj	I Cal I BC II							
Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Automotive Sqre to Khapari	18.46	34.00	6	12	1	1	14	3	42
Automotive Sqre to Congress Nagar	7.90	32.00	6	6	0	1	7	3	21
				18	1	2	21		63

Note: Reversal facility required at Congress Nagar.

Above train Operation resulting in:

Section	Effective headway	No. of Rakes	No. of Car
	neauway		
Automotive Sqre to	3	21 Rakes of 3	63
Congress Nagar		cars	
Congress Nagar to Khapari	6		
0 0 1			

6

Line 2 : East - West Corridor, Year : 2016

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	13	6	1	1	8	3	24
Agrasen Chowk to Subhash Nagar	8.19	29.00	13	4	0	0	4	3	12
				10	1	1	12		36

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	6.5	12 Rakes of 3	36
Nagar		cars	
Prajapati Nagar to Agrasen	13		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

Line 2 : East - West Corridor, Year : 2021

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	12	7	1	1	9	3	27
Agrasen Chowk to Subhash Nagar	8.19	29.00	12	4	0	0	4	3	12
				11	1	1	13		39

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	6	13 Rakes of 3	39
Nagar		cars	
Prajapati Nagar to Agrasen	12		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

Line 2 : East - West Corridor, Year : 2026

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	10	8	1	1	10	3	30
Agrasen Chowk to Subhash Nagar	8.19	29.00	10	4	0	1	5	3	15
				12	1	2	15		45

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	5	15 Rakes of 3	45
Nagar		cars	
Prajapati Nagar to Agrasen	10		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

Line 2 : East - West Corridor, Year : 2031

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	9	9	1	1	11	3	33
Agrasen Chowk to Subhash Nagar	8.19	29.00	9	5	0	1	6	3	18
				14	1	2	17		51

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

The real and the perturbed	angin		
Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	4.5	17 Rakes of 3	51
Nagar		cars	
Prajapati Nagar to Agrasen	9		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

Line 2 : East - West Corridor, Year : 2036

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
	•				Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	8	10	1	1	12	3	36
Agrasen Chowk to Subhash Nagar	8.19	29.00	8	5	0	1	6	3	18
				15	1	2	18		54

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	4	18 Rakes of 3	54
Nagar		cars	
Prajapati Nagar to Agrasen	8		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

Line 2 : East - West Corridor, Year : 2041

Section	Distance	Schedule	Headway	Rake Requirement					
	(kms)	Speed in kmph	(min)	Bare	Traffic	R&M	Total No	No. of Cars	No. of
					Reserve		of Rakes	per rake	Cars
Prajapati Nagar to Lokmanya Nagar	17.42	30.00	7	11	1	1	13	3	39
Agrasen Chowk to Subhash Nagar	8.19	29.00	7	6	0	1	7	3	21
				17	1	2	20		60

Note: Reversal facility required at Agrasen Chowk and Subhash Nagar.

Above train Operation resulting in:

Section	Effective	No. of Rakes	No. of Car
	headway		
Agrasen Chowk to Subhash	3.5	20 Rakes of 3	60
Nagar		cars	
Prajapati Nagar to Agrasen	7		
Chowk and Subhash Nagar			
to Lokmanya Nagar			
Total Turn Round Time(min)	6		

CHAPTER 8

ROLLING STOCK

8.1 INTRODUCTION

- 8.2 OPTIMIZATION OF COACH SIZE
- 8.3 PASSENGER CARRYING CAPACITY
- 8.4 WEIGHT
- 8.5 PERFORMANCE PARAMETERS
- 8.6 COACH DESIGN AND BASIC PARAMETERS
- 8-7 SELECTION OF TECHNOLOGY

TABLES

- TABLE 8.1SIZE OF COACH
- TABLE 8.2CARRYING CAPACITY OF MEDIUM RAIL VEHICLE
- TABLE 8.3WEIGHT OF LIGHT RAIL VEHICLES (TONNES)

FIGURES

- FIG. 8.1 PERFORMANCE PARAMETERS
- FIG. 8.2 INTERIOR VIEW OF THE CAR
- FIG. 8.3 VIEW OF THE PASSENGER DOORS
- FIG. 8.4 VIEW OF THE DRIVING CAB
- FIG. 8.5 VIEW OF THE GANGWAY

ATTACHMENT

ATTACHMENT I SALIENT FEATURES OF THE PROPOSED ROLLING STOCK

Chapter - 08

ROLLING STOCK

8.1 INTRODUCTION

The required transport demand forecast is the governing factor for the choice of the Rolling Stock. The forecasted Peak Hour Peak Direction Traffic calls for an Medium Rail Transit System (MRTS).

8.2 OPTIMIZATION OF COACH SIZE

The following optimum size of the coach has been chosen for this corridor as mentioned in Table 8.1.

Table 8.	1
----------	---

Size of the coach				
	Length*	Width	Height	
Driving Motor Car (DMC)	21.64 m	2.9 m	3.9 m	
Trailer car (TC)/Motor Car (MC)	21.34 m	2.9 m	3.9 m	

Size of the coach

*Maximum length of coach over couplers/buffers = 22.6 m

8.3 PASSENGER CARRYING CAPACITY

In order to maximize the passenger carrying capacity, longitudinal seating arrangement shall be adopted. The whole train shall be vestibuled to distribute the passenger evenly in all the coaches. Criteria for the calculation of standing passengers are 3 persons per square meter of standing floor area in normal state and 6 persons in crush state of peak hour.

Therefore, for the Medium Rail Vehicles (MRV) with 2.9 m maximum width and longitudinal seat arrangement, conceptually the crush capacity of 43 seated, 204 standing thus a total of 247 passengers for a Driving motor car, and 50 seated, 220 standing thus a total of 270 for a trailer/motor car is envisaged.

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

1/13

Following train composition is recommended: 3-car Train: DMC+TC+DMC

Table 8.2 shows the carrying capacity of Medium Rail Vehicles.

Table 8.2

Carrying Capacity of median Nan Venicies						
Particulars	Driving Motor car		Trailer car	/ Motor car	3 Car Train	
	Normal	Crush	Normal	Crush	Normal	Crush
Seated	43	43	50	50	136	136
Standing	102	204	110	220	314	628
Total	145	247	160	270	450	764

Carrying Capacity of Medium Rail Vehicles

NORMAL-3 Person/sqm of standee area

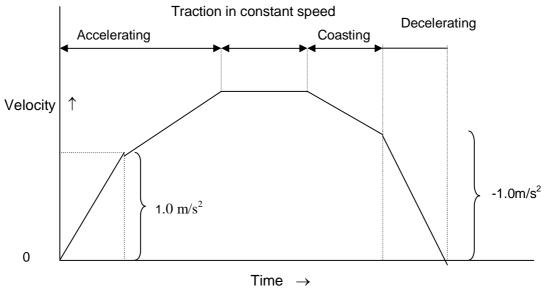
CRUSH -6 Person/sqm of standee area

8.4 WEIGHT

The weights of motorcar and trailer cars have been estimated as in Table 8.3, referring to the experiences in Delhi Metro. The average passenger weight has been taken as 65 kg.

	DMC	TC	3 Car Train
TARE (maximum)	40	40	120
Passenger			
(Normal)	9.425	10.4	29.25
(Crush @6p/sqm)	16.055	17.55	49.66
(Crush @8p/sqm)	20.475	22.295	63.245
Gross			
(Normal)	49.425	50.4	149.25
(Crush @6p/sqm)	56.055	57.55	169.66
(Crush @8p/sqm)	60.475	62.295	183.23
Axle Load @6 person/sqm	14.014	14.388	
Axle Load @8 person/sqm	15.119	15.577	

Table 8.3: Weight of Light Rail Vehicles (Tonnes)



The axle load @ 6persons/sqm of standing area works out in the range of 14.014T to 14.388T. Heavy rush of passenger, having 8 standees per sq. meter can be experienced occasionally. It will be advisable to design the coach with sufficient strength so that even with this overload, the design will not result in over stresses in the coach. Coach and bogie should, therefore, be designed for **16 T axle** load.

8.5 PERFORMANCE PARAMETERS

The recommended performance parameters are:

Maximum Design Speed: 95 kmph Maximum Operating Speed: 85 kmph Max. Acceleration: 1.0 m/s² Max. Deceleration 1.1 m/s² (Normal brake) More than 1.3 m/s² (Emergency brake)

8.6 COACH DESIGN AND BASIC PARAMETERS

The important criteria for selection of rolling stock are as under:

- (i) Proven equipment with high reliability
- (ii) Passenger safety feature
- (iii) Energy efficiency
- (iv) Light weight equipment and coach body
- (v) Optimized scheduled speed
- (vi) Aesthetically pleasing Interior and Exterior
- (vii) Low Life cycle cost
- (viii) Flexibility to meet increase in traffic demand
- (ix) Anti-telescopic

The controlling criteria are reliability, low energy consumption, lightweight and high efficiency leading to lower annualized cost of service. The coach should have high rate of acceleration and deceleration.

8.7 SELECTION OF TECHNOLOGY

8.7.1 Low life cycle cost

Low life cycle cost is achieved by the way of reduced scheduled and unscheduled maintenance and high reliability of the sub-systems. It is possible to achieve these objectives by adopting suitable proven technologies. Selection of following technologies has been recommended to ensure low life cycle cost-.

8.7.2 Car body

In the past carbon high tensile steel was invariably used for car bodies. In-fact almost all the coaches built by Indian Railways are of this type. These steel bodied coaches need frequent painting and corrosion repairs, which may have to be carried out up to 4-5 times during the service life of these coaches. It is now a standard practice to adopt stainless steel or aluminum for carbody.

The car bodies with aluminum require long and complex extruded sections which are still not manufactured in India. Therefore aluminum car body has not been considered for use. Stainless steel sections are available in India and therefore stainless steel car bodies have been specified. No corrosion repair is necessary on stainless steel cars during their service life.

Stainless steel car body leads to energy saving due to its lightweight. It also results in cost saving due to easy maintenance and reduction of repair cost from excellent anti corrosive properties as well as on improvement of riding comfort and safety in case of a crash or fire.

8.7.3 Bogies

Bolster less lightweight fabricated bogies with rubber springs are now universally adopted in metro cars. These bogies require less maintenance and overhaul interval is also of the order of 4,20,000km. Use of air spring at secondary stage is considered with a view to keep the floor level of the cars constant irrespective of passenger loading unlike those with coil spring. Perturbation from the track are also dampened inside the car body on account of the secondary air spring along with suitable Vertical Hydraulic Damper .The primary suspension system improve the curve running performance by

reducing lateral forces through application of conical rubber spring. A smooth curving performance with better ride index is being ensured by provision of above type of bogies.

8.7.4 Braking System

The brake system shall consist of -

- (i) An electro-pneumatic (EP) service friction brake
- (ii) A fail safe, pneumatic friction emergency brake
- (iii) A spring applied air-release parking brake
- (iv) An electric regenerative service brake
- (v) Provision of smooth and continuous blending of EP and regenerative braking

The regenerative braking will be the main brake power of the train and will regain the maximum possible energy and pump it back to the system and thus fully utilize the advantage of 3 phase technology .The regenerative braking should have air supplement control to bear the load of trailer car. In addition, speed sensors mounted on each axle, control the braking force of the axles with anti skid valves, prompting re-adhesion in case of a skid .The brake actuator shall operate either a tread brake or a wheel disc brake, preferably a wheel disc brake.

8.7.5 Propulsion System Technology

In the field of Electric Rolling Stock, DC series traction motors have been widely used due to its ideal characteristics and good controllability for traction applications. But these required intensive maintenance because of commutators and electro-mechanical contactors, resistors etc

The brush less 3 phase induction motors has now replaced the D.C. Series motors in traction applications. The induction motor, for the same power output, is smaller and lighter in weight and ideally suited for rail based Mass Rapid Transit applications. The motor tractive effort and speed is regulated by 'Variable Voltage and Variable frequency' control and can be programmed to suit the track profile and operating requirements. Another advantage of 3 phase a.c. drive and

VVVF control is that regenerative braking can be introduced by lowering the frequency and the voltage to reverse the power flow and to allow braking to very low speed.

For this corridor, three phase a.c. traction drive that are self-ventilated, highly reliable, robust construction and back up by slip/slid control have been recommended for adoption.

The AC catenary voltage is stepped down through a transformer and converted to DC voltage through converter and supply voltage to DC link, which feeds Inverter operated with Pulse Width Modulation (PWM) control technology and using Insulated Gate Bipolar

Transistors (IGBT). Thus three-phase variable voltage variable frequency output drives the traction motors for propulsion.

Recently advanced IGBT has been developed for inverter units. The advanced IGBT contains an Insulated Gate Bipolar Transistor (IGBT) and gate drive circuit and protection. The advanced IGBT incorporates its own over current protection, short circuit protection, over temperature protection and low power supply detection. The IGBT has internal protection from over current, short circuit, over temperature and low control voltage.

The inverter unit uses optical fiber cable to connect the control unit to the gate interface. This optical fiber cable transmits the gate signals to drive the advanced IGBT via the gate interface. This optical fiber cable provides electrical isolation between the advanced IGBT and the control unit and is impervious to electrical interference. These are recommended for adoption in Trains of MRTS.

8.7.6 Interior and Gangways

Passenger capacity of a car is maximized in a Metro System by providing longitudinal seats for seating and utilizing the remaining space for standing passenger. Therefore all the equipments are mounted on the under frame for maximum space utilization. The gangways are designed to give a wider comfortable standing space during peak hours along with easy and faster passenger movement especially in case of emergency.

Fig.8.2 Interior View of the Car

8.7.7 Passenger Doors

For swift evacuation of the passenger in short dwell period, four doors of adequate width, on each side of the coach have been considered. These doors shall be of such dimensions and location that all the passenger inside the train are able to evacuate within least possible time without conflicting movement .As the alignment passes through elevated section above ground, automatic door closing mechanism is envisaged from consideration of passenger safety. Passenger doors are controlled electrically by a switch in Driver cab. Electrically controlled door operating mechanism has been

preferred over pneumatically operated door to avoid cases of air leakage and sluggish operation of doors.

The door shall be of Bi-parting Sliding Type as in the existing coaches of DMRC.

Fig.8.3 : View of the Passenger Doors

8.7.8 Air-conditioning

With heavy passenger loading of 6 persons/sqm for standee area and doors being closed from consideration of safety and with windows being sealed type to avoid transmission of noise, air conditioning of coaches has been considered essential. Each coach shall be provided with two air conditioning units capable of cooling, heating and dehumidifying and thus automatically controlling interior temperature throughout the passenger area at 25°C with 65% RH all the times under varying ambient conditions up to full load. For emergency situations such as power failure or both AC failures etc, ventilation provision supplied from battery will be made. Provision shall be made to shut off the fresh air intake and re-circulate the internal air of the coach, during an emergency condition, such as fire outside the train causing excessive heat and smoke to be drawn in to the coach.

8.7.9 Cab Layout and Emergency Detrainment Door.

The modern stylish driver panel shall be FRP moulded which give maximum comfort and easy accessibility of different monitoring equipments to the driver along with clear visibility. The driver seat has been provided at the left side of the cabin.

Fig.8.4 : View of the Driving Cab

An emergency door for easy detrainment of the passenger on the track has been provided at the center of the front side of the each cabin which has a easy operation with one handle type master controller.

8.7.10 Communication

The driving cab of the cars are provided with continuous communication with base Operational Control Center and station control for easy monitoring of the individual train in all sections at all the time.

Public Address and Passenger Information Display System is provided in the car so that passengers are continuously advised of the next stoppage station, final destination station, interchange station, emergency situations if any, and other messages. The rolling stock is provided with Talk Back Units inside the cars, which permit conversation between passengers and the drivers in case of any emergency.

8.7.11 Noise and Vibration

The trains will pass through heavily populated urban area .The noise and vibration for a metro railway become an important criteria from public acceptance view point. The source of noise are (i) rail-wheel interaction (ii) noise generated from equipment like Blower, Compressor, air conditioner, door, Inverter etc. (iii) traction motor in running train .For elimination and reduction of noise following feature are incorporated: -

- Provision of anti drumming floor and noise absorption material.
- Low speed compressor, blower and air conditioner.
- Mounting of under frame equipments on anti-vibration pad
- Smooth and gradual control of door.

- Provision of GRP baffle on the via-duct for elimination of noise transmission.
- Provision of sound absorbing material in the supply duct and return grill of air conditioner.
- Sealing design to reduce the aspiration of noise through the gap in the sliding doors and piping holes.

The lower vibration level has been achieved by provision of bolster less type bogies having secondary air spring.

8.7.12 Passenger Safety Features

(i) ATP

The rolling stock is provided with Continuous Automatic Train Protection to ensure absolute safety in the train operation. It is an accepted fact that 60-70% of the accidents take place on account of human error. Adoption of this system reduces the possibility of human error.

(ii) Fire

The rolling stock is provided with fire retarding materials having low fire load, low heat release rate, low smoke and toxicity inside the cars. The electric cables used are also normally low smoke zero halogen type which ensures passenger safety in case of fire.

(iii) Emergency door

The rolling stock is provided with emergency doors at both ends of the cab to ensure well directed evacuation of passengers in case of any emergency including fire in the train,

(iv) Crash worthiness features

The rolling stock is provided with inter car couplers having crashworthiness feature which reduces the severity of injury to the passengers in case of accidents.

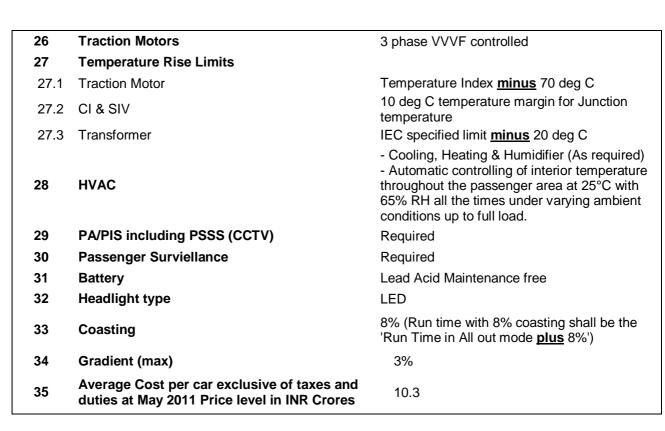
(v) Gangways

Broad gangways are provided in between the cars to ensure free passenger movement between cars in case of any emergency.

Fig.8.5 : View of the Gangway

The salient features of the proposed Rolling Stock are enclosed as Attachment-I

		Attachment I
	Salient Features of Rollin	g Stock for MRTS
S.No.	Parameter	Details
1	Gauge (Nominal)	1435mm
2	Traction system	
2.1	Voltage	25 KV AC
2.2	Method of current collection	Overhead Current Collection System
3	Train composition:	
3.1	3 car trainset	DMC+TC+DMC
4	Coach Body	Stainless Steel
5	Coach Dimensions	
5.1	Height	3.9 m
5.2	Width	2.9 m
5.3	Length over body (approx)	
	- Driving Motor Car (DMC)	21.64 m
	- Trailer Car (TC)	21.34 m
	Maximum length of coach over couplers/buffers:	22 to 22.6 m (depending upon Kinematic Envelop)
5.4	Locked down Panto height (if applicable)	4048 mm
5.5	Floor height	1100mm
6	Designed - Passenger Loading	
6.1	Design of Propulsion equipment	8 Passenger/ m ²
6.2	Design of Mechanical systems	10 Passenger/ m ²
7	Carrying capacity- @ 6 standees/sqm	
7.1	Coach carrying capacity	
	DMC	247 (seating - 43; standing - 204)
	TC	270 (seating - 50; standing - 220)
7.2	Train Carrying capacity	
	3 car train	764 (seating - 136; standing - 628)
8	Weight (Tonnes)	
8.1	Tare weight (maximum)	
	DMC	40
	TC	40
8.2	Passenger Weight in tons @ 6 standees/sqm	@ 0.065 T per passenger
	DMC	16.055
	TC	17.55
8.3	Gross weight in tons	
	DMC	56.055
	TC	57.55
9	Axle load(T)(@ 8 persons per sqm of standee area)	16 (System should be designed for 16T axleload)
10	Maximum Train Length - Approximate	
10.1	3 car trainset	≈68


NOV 2013

11	Speed	
10.1	Maximum Design Speed	95 Kmph
10.2	Maximum Operating Speed	85 Kmph
12	Wheel Profile	UIC 510-2
13	Noise Limits (ISO 3381 and 3095 - 2005)	
13.1	Stationary (Elevated and at grade)	
13.1.1	Internal (cab and saloon)	L _{pAFmax} 65 dB(A)
13.1.2	External (at 7.5 mtr from centre line of track)	L _{pAFmax} 68 dB(A)
13.2	Running at 85 kmph (Elevated and at grade)	
13.2.1	Internal (cab and saloon)	L _{pAeq,30} 72 dB(A)
13.2.2	External (at 7.5 mtr from centre line of track)	L _{pAFmax} 85 dB(A)
13.3	Stationary (Underground)	
13.3.1	Internal (cab and saloon)	L _{pAFmax} 72 dB(A)
14	Traction Motors Ventilation	Self
15	Acceleration on level tangent track	1 m/sec ²
16	Deacceleration on level tangent track	1.1 m/sec ² (>1.3 m/sec ² during emergency)
17	Type of Bogie	Fabricated
18	Secondary Suspension springs	Air
19	Brakes	- An electro-pneumatic (EP) service friction brake- An electric regenerative service brake- Provision of smooth and continuous blending of EP and regenerative braking- A fail safe, pneumatic friction emergency brake- A spring applied air-release parking brake- The brake actuator shall operate a Wheel Disc Brake- Brake Electronic Control Unit (BECU) - Independent for each bogie
20	Coupler	Auto
	Outer end of 3-car Unit (except DMC cab front side)	Automatic coupler with mechanical, electrical & pneumatic coupling
	Front cab end of DMC car	Automatic coupler with mechanical & pneumatic coupling but without electrical coupling head
	Between cars of same Unit	Semi-permanent couplers
21	Detrainment Door	Front
22	Type of Doors	Sliding
23	Passenger Seats	Stainless Steel
24	Cooling	
24.1	Transformer	Forced
24.2	CI & SIV	Self/Forced
24.3	ТМ	Self ventilated
25	Control System	Train based Monitor & Control System (TCMS/TIMS)

12/13

Chapter 8: Rolling Stock

13/13

CHAPTER 9

POWER SUPPLY, SYSTEM OF TRACTION AND POWER TARIFF

- 9.1 POWER REQUIREMENTS
- 9.2 NEED FOR HIGH RELIABILITY OF POWER SUPPLY
- 9.3 SELECTION OF TRACTION SYSTEM
- 9.4 SOURCES OF POWER SUPPLY
- 9.5 AUXILIARY SUPPLY ARRANGEMENTS FOR STATIONS & DEPOT
- 9.6 ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTROMAGNETIC COMPATIBILITY (EMC)
- 9.7 25KV FLEXIBLE OVERHEAD EQUIPMENT (OHE) SYSTEM
- 9.8 RATING OF MAJOR EQUIPMENT
- 9.9 STANDBY DIESEL GENERATOR (DG) SETS
- 9.10 SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEM
- 9.11 ENERGY SAVING MEASURES
- 9.12 ELECTRIC POWER TARIFF

TABLES

- TABLE 9.1 POWER DEMAND ESTIMATION (MVA)
- TABLE 9.2SOURCES OF POWER SUPPLY
- TABLE 9.3
 POWER DEMAND PROJECTION FOR VARIOUS SOURCES

FIGURES

- FIG. 9.1 TYPICAL HIGH VOLTAGE RECEIVING SUB-STATION
- FIG. 9.2 TYPICAL INDOOR AUXILIARY SUB-STATION

Chapter - 9

POWER SUPPLY

SYSTEM OF TRACTION AND POWER TARIFF

9.1 **POWER REQUIREMENTS**

Electricity is required for operation of Metro system for running of trains, station services (e.g. lighting, lifts, escalators, signaling & telecom, fire fighting etc) workshops, depots & other maintenance infrastructure within premises of metro system. The power requirements of a metro system are determined by peak-hour demands of power for traction and auxiliary applications. Broad estimation of auxiliary and traction power demand is made based on the following requirements:-

- (i) Specific energy consumption of rolling stock 75 KWh/1000 GTKM
- (ii) Regeneration by rolling stock 30%
- (iii) Elevated station load initially 250KW, which will increase to 400 KW in the year 2041
- (iv) Underground Station load initially 2000 kW, which will increase to 2500 kW in the year 2041
- Depot auxiliary load initially 2000 KW, which will increase to 2500 KW in the year 2041

Keeping in view of the train operation plan and demand of auxiliary and traction power requirements projected for the year 2016, 2021, 2031 and 2041 are summarized in table **Table 9.1** below:-

			Yea	ar	
Corridor		2016	2021	2031	2041
North-South Corridor – 1 Automotive Sqre to Khapri	Traction	4.32	5.01	5.84	7.16
Station.	Auxiliary	7.72	7.84	9.14	11.49
[19.658 kms & 17 Stations (15 Elevated, 2 at Grade)].	Total	12.04	12.85	14.98	18.65
East-West Corridor – 2	Traction	4.24	4.57	5.73	7.01
Prajapati Nagar to Lokmanya Nagar [18.557 kms & 19	Auxiliary	8.34	8.46	9.88	12.48
Elevated Stations].	Total	12.58	13.03	15.61	19.49

Table 9.1: Power Demand Estimation (MVA)

Detailed calculations of power demand estimation are attached at Annexure 9.1

9.2 NEED FOR HIGH RELIABILITY OF POWER SUPPLY

The Nagpur metro system is being designed to cater to crush load about 17000 passengers per direction during peak hours when trains are expected to run at 3.5 minutes intervals in 2041. Incidences of any power interruption, apart from affecting train running, will cause congestion at stations. Interruption of power at night is likely to cause alarm and increased risk to traveling public. Lack of illumination at stations, non-visibility of appropriate signages, disruption of operation of lifts and escalators is likely to cause confusion, anxiety and ire in commuters, whose tolerance level are low on account of stress. Effect on signal and communication may affect train operation and passenger safety as well. Therefore, reliable and continuous power supply is mandatory for efficient metro operations.

To ensure reliability of power supply, it is essential that both the sources of Supply and connected transmission & distribution networks are reliable and have adequate redundancies built in. It is desirable to obtain power supply at grid voltage of 220KV, 132 KV or 66kV from stable grid sub-stations and further transmission & distribution is done by the Metro Authority themselves.

9.3 SELECTION OF TRACTION SYSTEM

On techno-economic consideration, it is recommended to adopt 25 KV single phase AC Traction. In addition it has the following merits.

- Lower initial cost.
- Lower operating and maintenance cost as in case of 25 KV ac traction the regeneration is up-to 30% and the line losses are around 0.5% in comparison to D.C. losses up-to 6 7%.

- A.C. system poses lesser Fire hazards as current levels are much lower than D.C.
- No Stray current problems and hence the corrosion is controlled.

9.4 SOURCES OF POWER SUPPLY

The high voltage power supply network of Nagpur City has only 220kV and 132kV network on the periphery of the city to cater to various types of demand in vicinity of the proposed corridor. 220/132 kV sub stations are far away from the alignment and therefore, it involves substantial cable and it's laying cost.

Keeping in view the reliability requirements, two input sources of 220 kV or 132KV Voltage level are normally considered for each corridor. Therefore, to achieve the desired reliability, two Receiving Sub Stations (132/33/25 kV or 220/33/25 KV) are proposed to be set up for each Corridor – 1 & Corridor – 2. The intersection of the two corridors will be at Sitaburdi station (Elevated station of Corridor – 1).

It is proposed to avail power supply for traction as well as auxiliary services from the following grid sub-stations at 220/132kV through cable feeders.

A meeting was convened by with the officials of Maharashtra State Electricity Board and DMRC on dated:-09.10.2012. As per MSEDCL letter No./CE/NUZ/Tech/1379, dated:-01.12.2012 has confirmed the following power sources for the Nagpur Metro.

Corridor	Grid sub-station (with Input voltage)	Location of RSS of Metro Authority	Approx. length of cables
North-South Corridor – 1	1. 132 KV Uppalwadi Grid Sub-station.	2 x 132 KV bays near Automotive station	7 route km, 132 kV (Double Circuit cables).
Automotive Sqre to Khapri Station.	2. Proposed 220 KV Butibori Grid Sub-station.	2 x 220 KV bays at Khapri Station	4 route km, 220kV (Double Circuit cables).
East-West Corridor – 2	3. LILO of proposed 132 KV Pardi-Jattarodi ckt.	2 X132 KV bays near Prajapati Nagar station	4 route km, 132 kV (Double Circuit Cables).
Prajapati Nagar to Lokmanya Nagar.	LILO of proposed 132 KV Hingna – Lendra Ckt.	2 x 132 KV bays near Suhash Nagar station	10 route km, 132 kV (Double Circuit Cables).

 Table 9.2: Sources of Power Supply

As the power supply is available at 220 KV and 132 KV levels that too at a substantial distance from the alignment, one sub-station of each line to be considered with one set of transformers and add another set as the traffic grows. The above sub-stations are being considered as a conventional sub-station. In case a 220 KV or 132KV GIS is to be provided, there will be an additional cost of Rs. 20 Crores or 15 Crores per sub-station respectively.

Summary of expected power demand at various sources is given in Table 9.3.

Corridor	Input Source / Receiving Sub	Pea		nd – Nor VA)	mal	Peak		d – Emer IVA)	gency
	Station (RSS)	2016	2021	2031	2041	2016	2021	2031	2041
	At Depot near Khapri station								
North-South	Traction	2.60	2.75	3.50	4.30	4.32	4.65	5.84	7.16
Corridor – 1	Auxiliary	4.62	4.70	5.54	6.89	7.72	7.84	9.14	11.49
Automotive	Sub – Total (A)	7.22	7.45	9.04	11.19	12.04	12.50	14.98	18.65
Sqre to Khapari	Near automotive station								
	Traction	1.72	1.90	2.34	2.86	04.32	04.65	05.84	07.16
	Auxiliary	3.10	3.14	3.60	4.60	07.72	07.84	09.14	11.49
	Sub – Total (B)	4.82	5.04	5.94	7.46	12.04	12.50	14.98	18.65
	TOTAL (A + B)	12.04	12.49	14.98	18.65				
East-West	Near Subhash Nagar station								
Corridor – 2	Traction	2.54	2.77	3.43	4.21	4.21	4.57	5.73	7.01
Prajapati	Auxiliary	5.00	5.06	5.98	7.48	7.48	8.46	9.88	12.48
Nagar to Lokmanya	Total	7.54	7.83	9.41	11.69	12.58	13.03	15.61	19.49
Nagar	Near Prajapati Nagar station								
	Traction	1.70	1.80	2.30	2.80	4.21	4.57	5.73	7.01
	Auxiliary	3.34	3.40	3.90	5.00	7.48	8.46	9.88	12.48
	Total	5.04	5.20	6.20	7.80	12.58	13.03	15.61	19.49
	TOTAL (A + B)	12.58	13.03	15.61	19.49				

Table 9.3: Power Demand Projection for various sources

The 220 kV or 132 KV power supply will be stepped down to 25kV single phase for traction purpose at the RSS of Nagpur Metro and the 25kV traction supply will be fed to the OHE at viaduct through cable feeders. For feeding the auxiliary loads, the 220/33 kV or 132/33 KV power supply received will be stepped down to 33 kV and will be distributed along the alignment through 33kV Ring main cable network. These cables will be laid along the viaduct and tunnel walls. If one RSS trips on fault or input supply failure, train services can be maintained from the other RSS. In case of total grid failure, all trains may come to a halt but station lighting & other essential

services can be catered to by stand-by DG sets. Therefore, while the proposed scheme is expected to ensure adequate reliability, it would cater to emergency situations as well.

Fig. 9.1 : Typical High Voltage Receiving Sub-station

The 220 kV or 132 KV cables will be laid through public pathways of Maharasthra Grid Sub-stations to RSS of Metro Authority. For corridor – 1, one substation near Automotive station shall be provided with 2nos. (one as standby) 132/25 kV, 10 MVA single-phase traction Transformers for feeding Traction and 132/33 KV, 15 MVA three phase Transformers for feeding auxiliary loads and other near Khapri Depot shall be provided with 2nos. (one as standby) 220/25 kV, 10 MVA single-phase traction Transformers for feeding Traction and 220/33 KV, 15 MVA three phase Transformers for feeding auxiliary loads. For corridor – 2, one RSS near Subhash Nagar and other RSS near Prajapati Nagar station shall be provided with 2nos. (one as standby) 132/25 kV, 10MVA single phase traction Transformers for feeding Traction supply and 132/33 KV, 15 MVA three phase Transformers for feeding auxiliary loads. Interconnection will provide at 33KV & 25KV level to meet emergency requirement at Sitaburdi in case of failure of two RSS of any one corridor. The capacity of transformers may be reviewed considering the load requirement/distribution of both the corridors at the time of detailed design.Conventional Outdoor type 132 kV Switchgear is proposed for RSS's to be located in approx. 100 X 100 m (10000 sq. mtr.) land plot and for 220 KV

Conventional Outdoor type switchgear is proposed for RSS to be located in 120 x 100 m (12000 sq.mtr.). The availability of land in depot area may not be a constraint. The land at Automative station, Subhash Nagar and near Prajapati Nagar station to be allocated. Requirement of land for 220 KV GIS substation will be approx. 70 X 80 m (5600 sq. m) and for 132 KV GIS substation land requirement will be approx. 60 X 70 m (4200 sq. m) but the cost of substation works will increase by nearly Rs. 20 Crore and 15 Crores respectively. 220/132 kV Grid sub stations are far away from the alignment and therefore, it involves approx. Rs.20 Crores extra cable and it's laying cost.

9.5 AUXILIARY SUPPLY ARRANGEMENTS FOR STATIONS & DEPOT

Auxiliary sub-stations (ASS) are envisaged to be provided at each station (2 ASS's for Underground stations and 1 ASS for elevated station) for stepping down 33 kV supply to 415 V for auxiliary applications. A separate ASS is required at depot. The station ASS's will be located at mezzanine or platform level inside a room. The auxiliary load requirements have been assessed at 250kW for elevated / at-grade stations which is likely to increase up to 400 KW in the year 2041 and 2000 kW for Underground Station which is likely to increase up to 2500 KW in the year 2041. In order to meet the requirement of auxiliary power two dry type cast resin transformers (33/0.415kV) of 500kVA capacity are proposed to be installed at the elevated stations (one transformer as standby) and two transformer of 2.5 MVA at each underground ASS. For Property Development within the footprints of the station, a provision to add third transformer at a later date may be kept at elevated station.

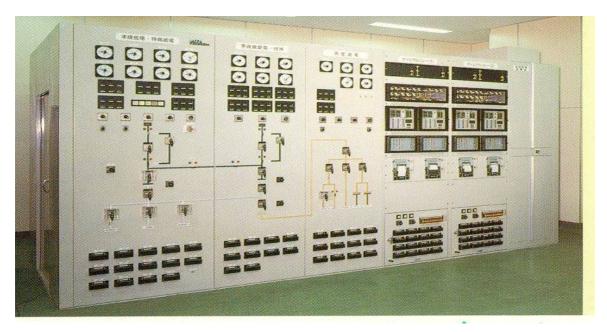


Fig. 9.2 : Typical Indoor Auxiliary Sub-station

9.6 ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTROMAGNETIC COMPATIBILITY (EMC)

25kV ac traction currents produce alternating magnetic fields that cause voltages to be induced in any conductor running along the track. Booster Transformer and Return Conductor (BT/RC) System is proposed for EMI mitigation. Concrete structures of elevated viaducts are not good electrical earths and therefore, Earthing and Bonding of the traction system shall be in accordance with the latest standards EN50122-1, IEEE80 and other relevant standards. Two earth conductors –Overhead Protection Cable (OPC) and Buried Earth Conductor (BEC) are proposed to be laid along with elevated via duct and all the metallic structures, structural reinforcement, running rails etc will be connected to these conductors to form an equiv-potential surface & a least resistance path to the fault currents. The overhead protection cable will also provide protection against lightning to the 25kV OHE and the elevated viaduct.

Detailed specification of equipment e.g. power cables, transformer, switchgear, E&M equipment etc shall be framed to reduce conducted or radiated emissions as per appropriate international standards. The Metro system as a whole (trains, signaling & telecomm, traction power supply, E&M system etc) shall comply with the EMC requirements of international standards viz. EN50121, EN50123, IEC61000 series etc. A detailed EMI/EMC plan will be required to be developed during project implementation stage.

9.7 25KV FLEXIBLE OVERHEAD EQUIPMENT (OHE) SYSTEM

25kV ac flexible OHE system shall comprise 150/107 sqmm Hard drawn copper contact wire and 65 sq.mm Cd-copper catenary wire. Return conductor (RC) shall be All Aluminum Conductor (AAC) of 233 sq.mm cross section. From safety considerations, Hydraulic type Anti-Tensioning Device (ATDs) are proposed on mainlines which does not require use of balance weight for tensioning of OHE conductors. Proven catenary fittings are proposed similar to DMRC system.

9.8 RATING OF MAJOR EQUIPMENT

25kV ac Overhead Equipment (OHE) shall comprise 107mm² HD-copper contact wire and 65 mm² Cd-copper catenary wire. Return conductor (RC) shall be All of OHE conductors.

Based on emergency demand expected at each RSS as shown in Table 9.3, 2 nos. 220 or 132/25kV traction transformers of 10 MVA capacity and 2 nos. 132/33 KV, 15 MVA capacity Auxiliary transformers shall be provided at each RSS in Corridor –I and 2 nos. 132/25kV traction transformers of 10 MVA capacity and 2 nos. 132/33 KV, 15 MVA capacity Auxiliary transformers of 10 MVA capacity and 2 nos. 132/33 KV, 15 MVA capacity Auxiliary transformers shall be provided at each RSS in Corridor –I and 2 nos. 132/25kV traction transformers of 10 MVA capacity and 2 nos. 132/33

Chapter 9: Power Supply, System of Traction and Power Tariff

Corridor –II, being standard design (one to be in service and second one to serve as standby). The 132kV incoming cable 3-phase single core XLPE insulated with 630 mm² Aluminum conductor for corridor-1 & Corridor-2 and 220kV, 3-phase single core XLPE insulated with 800 mm² Aluminum conductor for corridor-1 shall be used to meet the normal & emergency loading requirements and fault level of the 132 kV and 220 KVsupply.

33kV and 25kV switchgear shall be rated for 1250 A being standard design. 33kV cable ring network shall be adequately rated to transfer requisite auxiliary power during normal as well as emergency situations and accordingly 3 number of Single core 150 mm² FRLSH Aluminum conductor cable XLPE insulated 33kV cable is proposed for ring main network.

Adequate no. of cables are required for transfer of traction power from Metro's RSS to 25kV OHE. Single-phase XLPE insulated cables with 240mm² copper conductor are proposed for traction power. Based on current requirements, 2 cables are required for each of the two circuits to feed power to OHE.

The above capacities of transformers, switchgear, cables etc. have been worked out based on the conceptual design. Therefore, these may be required to be revised for better accuracy during design stage of project implementation.

9.9 STANDBY DIESEL GENERATOR (DG) SETS

In the unlikely event of simultaneous tripping of all the input power sources or grid failure, the power supply to stations as well as to trains will be interrupted. It is, therefore, proposed to provide a standby DG set of 200 KVA capacity at the elevated stations and 2 X 1250/750 KVA at Underground stations to cater to the following essential services:

- (i) Essential lighting
- (ii) Signaling & telecommunications
- (iii) Fire fighting system
- (iv) Lift operation
- (v) Fare collection system
- (vi) Tunnel Ventilation (for Underground Stations)

Silent type DG sets with low noise levels are proposed, which do not require a separate room for installation.

9.10 SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEM

The entire system of power supply (receiving, traction & auxiliary supply) shall be monitored and controlled from a centralized Operation Control Centre (OCC) through SCADA system. Modern SCADA system with intelligent remote terminal units (RTUs)

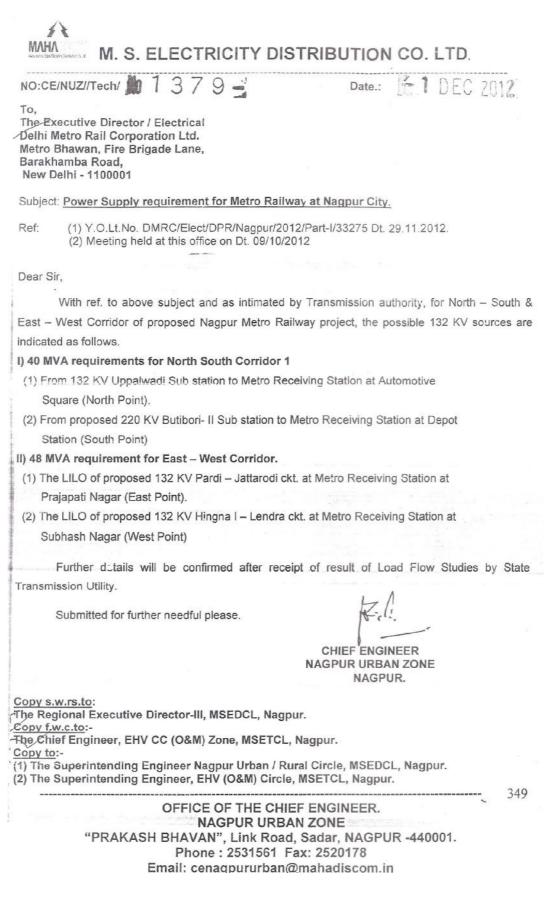

shall be provided. Optical fibre provided for telecommunications will be used as communication carrier for SCADA system.

Digital Protection Control System (DPCS) is proposed for providing data acquisition, data processing, overall protection control, interlocking, inter-tripping and monitoring of the entire power supply system consisting of 33kV ac switchgear, transformers, 25kV ac switchgear and associated electrical equipment. DPCS will utilize microprocessor-based fast-acting numerical relays & Programmable Logic Controllers (PLCs) with suitable interface with SCADA system.

9.11 ENERGY SAVING MEASURES

Energy charges of any metro system constitute a substantial portion of its operation & maintenance (O & M) costs. Therefore, it is imperative to incorporate energy saving measures in the system design itself. The auxiliary power consumption of metros is generally more than the traction energy consumed by train movement during initial years of operation. Subsequently, traction power consumption increases with increase in train frequency/composition in order to cater more traffic. The proposed system of Nagpur Metro includes the following energy saving features:

- (i) Modern rolling stock with 3-phase VVVF drive and lightweight stainless steel coaches has been proposed, which has the benefits of low specific energy consumption and almost unity power factor.
- (ii) Rolling stock has regeneration features and it is expected that 30% of total traction energy will be regenerated and fed back to 25kV ac OHE to be consumed by nearby trains.
- (iii) Effective utilization of natural light is proposed. In addition, the lighting system of the stations will be provided with different circuits (33%, 66% & 100%) and the relevant circuits can be switched on based on the requirements (day or night, operation or maintenance hours etc).
- (iv) Machine-room less type lifts with gearless drive have been proposed with 3phase VVVF drive. These lifts are highly energy efficient.
- (v) The proposed heavy-duty public services escalators will be provided with 3phase VVVF drive, which is energy efficient & improves the power factor. Further, the escalators will be provided with infrared sensors to automatically reduce the speed (to idling speed) when not being used by passengers.
- (vi) The latest state of art and energy efficient electrical equipment (e.g. transformers, motors, light fittings etc) has been incorporated in the system design.



- (vii) Efficient energy management is possible with proposed modern SCADA system by way of maximum demand (MD) and power factor control.
- (viii) LED lighting is proposed in certain areas

9.12 ELECTRIC POWER TARIFF

The cost of electricity is a significant part of Operation & Maintenance (O&M) charges of the Metro System, which constitutes about 25 - 35% of total annual working cost. Therefore, it is the key element for the financial viability of the project. The annual energy consumption is assessed to be about 36 million units in initial years (2016), which will increase to about 56 Million Units by year 2041 for Corridor -1 and about 31 million units in initial years (2016), which will increase to 52 Million Units by year 2041 for Corridor -2. In addition to ensuring optimum energy consumption, it is also necessary that the electric power tariff be kept at a minimum in order to contain the O& M costs. Therefore, the power tariff for this Corridor should be at effective rate of purchase price (at 132/220 kV voltage level) plus nominal administrative charges i.e. on a no profit no loss basis. This is expected to be in the range of Rs. 5.00 per unit with Rs.125/KVA/month fixed charges. It is proposed that Government of Maharashtra will take necessary steps to fix power tariff for Nagpur Metro at "No Profit No Loss" basis. Financial analysis has been carried out based on this tariff for the purpose of finalizing the DPR. Similar approach is being pursued for Delhi Metro.

pproximate Energy Consumption																					NAGP	PUR MET	rro																			
					CORF	RIDOR -	2 (Eas	t-West)									CORRIE	DOR - 2	(East-	West)								CO	RRIDOR	- 3 (East-\	Nest)							Т	otal			_
				Pra	japati	Nagar to	o Agra	sen Ch	owk							Agras	sen Ch	owk to	Subh	ash Na	gar						S	ubhash	Nagar t	o Lokma	nya Na	agar				P	rajapati	Nagar t	to Lok	manya N	agar	
ear	Year 2	016	Year 2	2021	Year 2	2026	Year 20	031	Year 2	036	Year 20	041	Year 2	2016	Year 20	021	Year 2	026	Year	2031	Year	2036	Year	2041	Year	2016	Year 202	1 Ye	ar 2026	Year	2031	Year	2036	Yea	r 2041	Year- 2016	Year- 2021	Year- 2026	Year 2031			
ENGTH (KM)	4.76	KM	4.76	KM	4.76	KM	4.76	KM	4.76	KM	4.76	<m< td=""><td>8.19</td><td>M</td><td>8.19 KM</td><td>A</td><td>8.19 K</td><td>М</td><td>8.19</td><td><m< td=""><td>8.19</td><td>KM</td><td>8,19</td><td>KM</td><td>5.22</td><td>KM</td><td>5.22 KM</td><td>5.2</td><td>22 KM</td><td>5.22</td><td>(M</td><td>5.22</td><td>KM</td><td>5.22</td><td>KM</td><td>18.17</td><td>18.1</td><td>7 18.1</td><td>17 18.</td><td>17 18</td><td>17 18</td><td>3.17</td></m<></td></m<>	8.19	M	8.19 KM	A	8.19 K	М	8.19	<m< td=""><td>8.19</td><td>KM</td><td>8,19</td><td>KM</td><td>5.22</td><td>KM</td><td>5.22 KM</td><td>5.2</td><td>22 KM</td><td>5.22</td><td>(M</td><td>5.22</td><td>KM</td><td>5.22</td><td>KM</td><td>18.17</td><td>18.1</td><td>7 18.1</td><td>17 18.</td><td>17 18</td><td>17 18</td><td>3.17</td></m<>	8.19	KM	8,19	KM	5.22	KM	5.22 KM	5.2	22 KM	5.22	(M	5.22	KM	5.22	KM	18.17	18.1	7 18.1	17 18.	17 18	17 18	3.17
. of trains per direction in a day*	51		54	l.	70		74		83		99		102		108		140		158		166		198		51		54		70	74		83		99								_
EIGHT OF TRAIN & PASSENGER	183	Т	183	βT	183	Т	183	Т	183	Т	183 1	r	183 1		183 T		183 T		183	Г	183	Т	183	Т	183	Т	183 T		33 T	183 1	Г	183	Т	183	Т							
C (NET) with 30% regen		KWH/ 1000 GTKM		6 KWH/ 1000 GTKM		KWH/ 1000 GTKM		KWH/ 1000 GTKM	53	KWH/ 1000 GTKM	53 k 1	KWH/ 1000 GTKM	1	WH/ 000 STKM		VH/ 100 TKM		WH/ 000 TKM		KWH/ 1000 GTKM		KWH/ 1000 GTKM	53	KWH/ 1000 GTKM		KWH/ 1000 GTKM	53 KWI 1000 GTK)	53 KWH/ 1000 GTKM		(WH/ 1000 GTKM		KWH/ 1000 GTKM	53	KWH/ 1000 GTKM							
arly Traction Energy consumption h 365 days working with 30% Jen	1.70	million units	1.81	million units	2.34	million units	2.47	million units	2.77	million units		nillion units	5.86 r L	nillion Inits	6.21 mi un	illion hits	8.05 m u	nillion nits		million units		million units	11.38	million units		million units	1.98 milli unit		57 millior units		nillion Inits	0.04	million units	3.63	million units							
tion aux power requirement													ľ																													_
vated/at-grade station	0.25			MW	0.30		0.30		0.35		0.40		0.25		0.25 M		0.30 M		0.30		0.35		0.40		0.25		0.25 MW		30 MW	0.30		0.35		0.40								-
6 station	2.00	MW	2.10	MW	2.20	MW	2.30	MW	2.40	MW	2.50	WW	2.00	/W	2.10 M	N	2.20 M	W	2.30	WW	2.40	MW	2.50	MW	2.00	MW	2.10 MW	2.3	20 MW	2.30	ΛW	2.40	MW	2.50	MW							
of elevated/at-grade stations	6		6	5	6		6		6		6		9		9		9		9		9		9		4		4		4	4		4		4		19	19	9 1	19	19	19	19
of U/G stations	0		0)	0		0		0		0		0		0		0		0		0		0		0		0		0	0		0		0		C	(כ	0	0	0	0
al Station Aux Power requirement	1.50		1.50		1.80	MW	1.80	MW	2.10		2.40		2.25		2.25 M		2.70 M		2.70		3.15		3.60		1.00		1 MW		20 MW	1.20		1.40			MW	4.75	1.1 \			70 6	65 7	7.60
pot Aux power requirement		MW		MW	0	MW	0	MW		MW	0		0		0 M\		0 M			WW		MW		MW	2.00		2.10 MW		20 MW	2.30		2.40		2.50		2.00	2.10	2.2		30 2	40 2	2.50
al Aux Power requirement	1.50			MW		MW		MW	2.10		2.40		2.25		2.25 M		2.70 M		2.70		3.15		3.60		3.00		3.1 MW		10 MW	3.50		3.80		4.10		6.75	6.8	5 7.9		00 9	05 10	
tal Aux power requirement (MVA) suming 5% energy losses and .85 for aux loads	1.85	MVA	1.85	MVA	2.22	MVA	2.22	MVA	2.59	MVA	2.96	WVA	2.78	IVA	2.78 M	VA	3.34 M	IVA	3.34	AVN.	3.89	MVA	4.45	MVA	3.71	MVA	3.83 MV <i>A</i>	4.:	20 MVA	4.32	AVN.	4.69	MVA	5.06	MVA	8.34	8.40	6 9.7	76 9.	88 11	18 12	48
versity factor of aux loads	0.40		0.40)	0.40		0.40		0.40		0.40		0.40		0.40		0.40		0.40		0.40		0.40		0.40		0.40	0.4	10	0.40		0.40		0.40								
arly Aux Energy consumption 20 /day and 365 days working (million its)		million units	4.60) million units	5.52	million units	5.52	million units	6.44	million units	7.36 r L	nillion units	6.90 r ւ	nillion Inits	6.90 mi un		8.28 m u	nillion nits		million units		million units	11.04	million units		million units	9.50 milli unit		12 millior units		nillion Inits		million units	12.57	million units	20.70	21.00	24.2	22 24.	53 27	75 30	1.97
t Annual Energy Consumption action & Aux)	6.30	million units	6.40	million units	7.86	million units	7.99	million units	9.21	million units	10.67 r L	nillion units		nillion Inits	13.11 mi un			nillion nits	17.36	million units		million units	22.42	million units		million units	11.48 milli unit		99 million units		nillion Inits		million units	16.20	million units	30.13	31.00	37.1	18 38.	80 43	11 49).29

POWER REQUIREMENTS															NAGPUR N	ETRO													
				CORRIDOR	2 (East-	-West)						CORRIDOR	R - 2 (Ea	ast-West)						CORRIDOR - 3	(East-West)					To	al		
			Р	rajapati Nagar	to Agras	en Chov	wk				А	grasen Chow	k to Su	bhash Nag	qar				Sub	hash Nagar to L	okmanya Naga	ar			Prajapati	Nagar to	Lokmany	a Nagar	
	Year 2016	Year 2		Year 2026	Year 20		Year 20	36 Yea	ar 2041	Year 2016	Year 2021	Year 2026	i Y	ear 2031	Year 2036	Year 2041	Year 20	016	Year 2021	Year 2026	Year 2031	Year 2036	Year 2041	Year- 2016	Year- 2021	Year- 2026			'ear- :041
Traction power requirements																													
No of cars	3 (2DM +1TC		(2DMC +1TC)	3 (2DMC +1TC)	-	(2DMC +1TC)		2DMC •1TC)	3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DN +1TC		3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DMC +1TC)		DMC TC)	3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DMC +1TC)	3 (2DM +1TC)						
Passenger weight	63 T	63	Т	63 T	63	т	63 T		63 T	63 T	63 T	63 T		63 T	63 T	63 T	63 T		63 T	63 T	63 T	63 T	63 T						
Train Tare weight	120 T	120	Т	120 T	120	Т	120 T	1	20 T	120 T	120 T	120 T	1	20 T	120 T	120 T	120 T		120 T	120 T	120 T	120 T	120 T						
Total train weight	183 T	183	Т	183 T	183	Т	183 T	. 1	83 T	183 T	183 T	183 T	1	83 T	183 T	183 T	183 T		183 T	183 T	183 T	183 T	183 T						
Section length	4.76 KM	4.76	KM	4.76 KM	4.76		4.76 k	(M 4	.76 KM	8.19 KM	8.19 KM	8.19 KM		.19 KM	8.19 KM	8.19 KM	5.22 KN		5.22 KM	5.22 KM	5.22 KM	5.22 KM	5.22 KM	18.1	18.17	18.17	18.17	18.17	18.17
Headway	13 mts		mts	10 mts	-	mts	8 n		7 mts	6.5 mts	6 mts	5 mts		4.5 mts	4 mts	3.5 mts	13 mt		12 mts	10 mts	9 mts	8 mts	7 mts						
Specific Energy consumption	75 KWh 000 GTK		KWhr/1 000 GTKM	75 KWhr/1 000 GTKM		KWhr/1 000GT KM	0	Whr/1 00 STKM	75 KWhr/ 1000 GTKM	75 KWhr/ 1000 GTKM	75 KWhr/ 1000 GTKM	75 KWh 1000 GTK)	75 KWhr/ 1000 GTKM	75 KWhr/1 000 GTKM	75 KWhr/1 000 GTKM		Vhr/ 100 TKM	75 KWhr/1 000 GTKM	75 KWhr/1 000 GTKM	75 KWhr/ 1000 GTKM	75 KWhr/ 1000 GTKM	75 KWhr 1000 GTKM	1					
No. of trains/hr in both directions	9	10		12	13		15	1	7.1	18	20	24		27	30	34.29	9		10	12	13	15	17						
Peak traction power requirement	0.60 MW	0.65	MW	0.78 MW	0.87	MW	0.98 N	/W 1	.12 MW	2.08 MW	2.25 MW	2.70 MW	3.	.00 MW	3.38 MW	3.86 MW	0.66 M\	N	0.72 MW	0.86 MW	0.96 MW	1.08 MW	1.23 MW						
Less Regeneration @ 30%	0.18 MW	0.20	MW	0.24 MW	0.26	MW	0.29 N	/W 0	.34 MW	0.62 MW	0.68 MW	0.81 MW	0.	.90 MW	1.01 MW	1.16 MW	0.20 M\	W	0.22 MW	0.26 MW	0.29 MW	0.32 MW	0.37 MW						
Depot power requirements	0 MW	0	MW	0 MW	0	MW	0 N	/W	0 MW	0 MW	0 MW	0 MW		0 MW	0 MW	0 MW	1.50 M\	W	1.60 MW	1.70 MW	1.80 MW	1.90 MW	2.00 MW						
Total traction power requirement	0.42 MW	0.46	MW	0.55 MW	0.61	MW	0.69 N	/W 0	.78 MW	1.45 MW	1.58 MW	1.89 MW	2.	.10 MW	2.36 MW	2.70 MW	1.96 M\	W	2.10 MW	2.30 MW	2.47 MW	2.65 MW	2.86 MW	3.8	4.14	4.74	5.18	5.70	6.35
Total traction power requirement (MVA) assuming 5% energy losses and .95 pf	0.47 MVA	0.51	MVA	0.61 MVA	0.67	MVA	0.76 N	/VA 0.	.87 MVA	1.61 MVA	1.74 MVA	2.09 MVA	2.	.32 MVA	2.61 MVA	2.98 MVA	2.17 M	VA	2.32 MVA	2.54 MVA	2.73 MVA	2.93 MVA	3.16 MVA	4.24	4.57	5.24	5.73	6.30	7.01
Station aux power requirements																													
Elevated/at-grade stationpower consumption	0.25 MW	0.25	MW	0.30 MW	0.30	MW	0.35 N	/W 0	.40 MW	0.25 MW	0.25 MW	0.30 MW	0.	.30 MW	0.35 MW	0.40 MW	0.25 M\	W	0.25 MW	0.30 MW	0.30 MW	0.35 MW	0.40 MW						
Underground stationpower consumption	2.00 MW	2.10	MW	2.20 MW	2.30	MW	2.40 N	/W 2	.50 MW	2.00 MW	2.10 MW	2.2 MW	2.	.30 MW	2.40 MW	2.50 MW	2.00 M\	W	2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW						
No. of elevated/at-grade stations	6	6		6	6		6		6	9	9	9		9	9	9	4		4	4	4	4	4	19	19	19	19	19	19
No. of Underground stations	0	0		0	0		0		0	0	0	0		0	0	0	0		0	0	0	0	0		0 0	0	0	0	0
Total Station Aux Power requirement	1.50 MW	1.50	MW	1.80 MW	1.80	MW	2.10 N	/W 2	.40 MW	2.25 MW	2.25 MW	2.7 MW	2.	.70 MW	3.15 MW	3.60 MW	1.00 M\	W	1 MW	1.2 MW	1.20 MW	1.4 MW	1.6 MW	4.7	4.75	5.70	5.70	6.65	7.60
Depot Aux power requirement	0 MW		MW	0 MW		MW	0 N		0 MW	0 MW	0 MW	0 MW		0 MW	0 MW	0 MW	2.00 M\		2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW						
Total Aux Power requirement	1.50 MW	1.50	MW	1.80 MW	1.80	MW	2.10 N	/W 2	.40 MW	2.25 MW	2.25 MW	2.7 MW	2.	.70 MW	3.15 MW	3.60 MW	3.00 M\	W	3.1 MW	3.4 MW	3.50 MW	3.8 MW	4.10 MW	6.7	6.85	7.90	8.00	9.05	10.10
Total aux power requirement (MVA) assuming 5% energy losses and .85 pf for aux loads	1.85 MVA	1.85	MVA	2.22 MVA	2.22	MVA	2.59 N	IVA 2	.96 MVA	2.78 MVA	2.78 MVA	3.34 MVA	. 3.	.34 MVA	3.89 MVA	4.45 MVA	3.71 M\	VA	3.83 MVA	4.20 MVA	4.32 MVA	4.69 MVA	5.06 MVA	8.3	8.46	9.76	9.88	11.18	12.48
Total traction & aux power requirement (MVA)	2.32 MVA	2.36	MVA	2.83 MVA	2.90	MVA	3.35 N	IVA 3	.83 MVA	4.39 MVA	4.52 MVA	5.42 MVA	5.	.66 MVA	6.50 MVA	7.43 MVA	5.88 M\	VA	6.15 MVA	6.74 MVA	7.05 MVA	7.63 MVA	8.2 MVA	12.5	13.03	15.00	15.61	17.48	19.49

Annexure:-7.1

Approximate Energy Consumption								NAGPU	R MET	20										
								CORRIDOR -	1 (North	-South)										
			Automotive Sqre t	o Congress Naga	r					Congress Na	igar to Khapari					Au	tomotive Sc	re to Khapa	ri	
Year	Year 2016	Year 2021	Year 2026	Year 2031	Year 2036	Year 2041	Year 2016	Year 2021	1	(ear 2026	Year 2031	Year 2036	1	'ear 2041	Year-2016	Year-2021	Year-2026	Year-2031	Year-2036	/ear-2041
LENGTH (KM)	7.90 KM	11.35 KM	11.35 KM	11.3	85 KM	11.35 KM	11.353 KM	11.3	5 KM	19.25	19.25	19.25	19.25	19.25	19.25					
No. of trains per direction in a day*	102	108	140	158	166	198	51	54	7	0	74	83	9	9						
WEIGHT OF TRAIN & PASSENGER	183 T	18	33 T	183 T	183 T	18	3 T													
SFC (NET) with 30% regen	53 KWH/1000 GTKM	53 KWH/10 GTKM	00 5	3 KWH/1000 GTKM	53 KWH/1000 GTKM	53 KWH/1000 GTKM	5	3 KWH/1000 GTKM												
Yearly Traction Energy consumption with 365 days working with 30% regen	5.66 million units	5.99 million units	7.76 million units	8.76 million units	9.21 million units	10.98 million units	4.07 million units	4.31 million units	5.5	i8 million units	5.90 million units	6.62 million units	7.8	9 million units						
Station aux power requirement																				
Elevated/at-grade station	0.25 MW	0.25 MW	0.30 MW	0.30 MW	0.35 MW	0.40 MW	0.25 MW	0.25 MW	0.3	80 MW	0.30 MW	0.35 MW	0.4	0 MW						
U/G station	2.00 MW	2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW	2.00 MW	2.10 MW	2.2	20 MW	2.30 MW	2.40 MW	2.5	0 MW						
no. of elevated/at-grade stations	9	9	9	9	9	9	8	8		8	8	8		8	17	17	17	17	17	1
no. of U/G stations	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0	0	
Total Station Aux Power requirement	2.25 MW	2.25 MW	2.70 MW	2.70 MW	3.15 MW	3.60 MW	2.00 MW	2 MW	2	.4 MW	2.40 MW	2.80 MW	3.2	0 MW	4.25	4.25	5.1	5.10	5.95	6.8
Depot Aux power requirement	0 MW	2.00 MW	2.10 MW	2.2	20 MW	2.30 MW	2.40 MW	2.5	0 MW	2.00	2.10	2.20	2.30	2.40	2.5					
Total Aux Power requirement	2.25 MW	2.25 MW	2.70 MW	2.70 MW	3.15 MW	3.60 MW	4.00 MW	4.1 MW	4	.6 MW	4.70 MW	5.20 MW	5.7	0 MW	6.25	6.35	7.3	7.40	8.35	9.3
Total Aux power requirement (MVA) assuming 5% energy losses and .85 pf for aux loads	2.78 MVA	2.78 MVA	3.34 MVA	3.34 MVA	3.89 MVA	4.45 MVA	4.94 MVA	5.06 MVA	5.6	8 MVA	5.81 MVA	6.42 MVA	7.0	4 MVA	7.72	7.84	9.02	9.14	10.31	11.4
Diversity factor of aux loads	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.4	10	0.40	0.40	0.4	0						
Yearly Aux Energy consumption 20 hrs/day and 365 days working (million units)	6.90 million units	6.90 million units	8.28 million units	8.28 million units	9.66 million units	11.04 million units	12.26 million units	12.57 million units	14.1	0 million units	14.41 million units	15.94 million units	17.4	8 million units	19.16	19.47	22.38	22.69	25.60	28.5
Net Annual Energy Consumption (Traction & Aux)	12.56 million units	12.89 million units	16.04 million units	17.04 million units	18.86 million units	22.02 million units	16.33 million units	16.88 million units	19.6	8 million units	20.31 million units	22.56 million units	25.3	7 million units	28.89	29.76	35.73	37.35	41.43	47.3

Annexure:-7.1

POWER REQUIREMENTS								NAGPUR METRO									
							CORF	RIDOR - 1 (North-South)								
			Automotive Sq	e to Congress Nagar					Congress Naga	r to Khapari				Automotive	Sqre to Khapari		
	Year 2016	Year 2021	Year 2026	Year 2031	Year 2036	Year 2041	Year 2016	Year 2021	Year 2026	Year 2031	Year 2036	Year 2041	Year-2016	Year-2021 Year-202	6 Year-2031 Y	ear-2036 Y	ear-2041
Traction power requirements																	
No of cars	3 (2DMC+1TC)	3 (2DMC+1TC)	3 (2DMC+1TC)	3 (2DMC+1TC)	3 (2DMC+1TC)												
Passenger weight	63 T	63 T	63 T	63 T	63 T												
Train Tare weight	120 T	120 T	120 T	120 T	120 T												
Total train weight	183 T	183 T	183 T	183 T	183 T												
Section length	7.90 KM	11.35 KM	11.35 KM	11.35 KM	11.35 KM	11.35 KM	11.35 KM	19.25	19.25 19.	25 19.25	19.25	19.25					
Headway	6.5 mts	6 mts	5 mts	4.5 mts	4 mts	3.5 mts	13 mts	12 mts	10 mts	9 mts	8 mts	7 mts					
Specific Energy consumption	75 KWhr/1000 GTKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000 GTKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	75 KWhr/1000G TKM	i				
No. of trains/hr in both directions	18	20	24	27	30	34	9	10	12	13	15	17					
Peak traction power requirement	2.00 MW	2.17 MW	2.60 MW	2.89 MW	3.26 MW	3.72 MW	1.44 MW	1.56 MW	1.87 MW	2.08 MW	2.34 MW	2.67 MW					
Less Regeneration @ 30%	0.60 MW	0.65 MW	0.78 MW	0.87 MW	0.98 MW	1.12 MW	0.43 MW	0.47 MW	0.56 MW	0.62 MW	0.70 MW	0.80 MW					
Depot power requirements	0 MW	1.50 MW	1.60 MW	1.70 MW	1.80 MW	1.90 MW	2.00 MW										
Total traction power requirement	1.40 MW	1.52 MW	1.82 MW	2.03 MW	2.28 MW	2.60 MW	2.51 MW	2.69 MW	3.01 MW	3.26 MW	3.54 MW	3.87 MW	3.91	4.21 4.	83 5.28	5.82	6.48
Total traction power requirement (MVA) assuming 5% energy losses and .95 pf	1.55 MVA	1.68 MVA	2.02 MVA	2.24 MVA	2.52 MVA	2.88 MVA	2.77 MVA	2.98 MVA	3.33 MVA	3.60 MVA	3.91 MVA	4.28 MVA	4.32	4.65 5.	34 5.84	6.43	7.16
Station aux power requirements																	·
Elevated/at-grade stationpower consumption	0.25 MW	0.25 MW	0.3 MW	0.30 MW	0.35 MW	0.40 MW	0.25 MW	0.25 MW	0.30 MW	0.30 MW	0.35 MW	0.40 MW					
Underground stationpower consumption	2.00 MW	2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW	2 MW	2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW					
No. of elevated/at-grade stations	9	9	9	9	9	9	8	8	8	8	8	8	17	17	17 17	17	1.
No. of Underground stations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	1
Total Station Aux Power requirement	2.25 MW	2.25 MW	2.7 MW	2.70 MW	3.15 MW	3.60 MW	2.00 MW	2.00 MW	2.40 MW	2.40 MW	2.80 MW	3.20 MW					
Depot Aux power requirement	0 MW	2 MW	2.10 MW	2.20 MW	2.30 MW	2.40 MW	2.50 MW										
Total Aux Power requirement	2.25 MW	2.25 MW	2.7 MW	2.70 MW	3.15 MW	3.60 MW	4.00 MW	4.10 MW	4.60 MW	4.70 MW	5.20 MW	5.70 MW	6.25		30 7.40	8.35	9.30
Total aux power requirement (MVA) assuming 5% energy losses and .85 pf for aux loads	2.78 MVA	2.78 MVA	3.34 MVA	3.34 MVA	3.89 MVA	4.45 MVA	4.94 MVA	5.06 MVA	5.68 MVA	5.81 MVA	6.42 MVA	7.04 MVA	7.72	7.84 9.	9.14	10.31	11.49
Total traction & aux power requirement (MVA)	4.33 MVA	4.46 MVA	5.35 MVA	5.57 MVA	6.41 MVA	7.33 MVA	7.71 MVA	8.04 MVA	9.01 MVA	9.40 MVA	10.33 MVA	11.32 MVA	12.04	12.50 14.	36 14.98	16.74	18.6

CHAPTER 10

MAINTENANCE DEPOT

- 10.1 THE NAGPUR METRO PROJECT CORRIDORS
- 10.2 DEPOT- CUM- WORKSHOP
- 10.3 MAINTENANCE PHILOSOPHY
- 10.4 ROLLING STOCK MAINTENANCE NEEDS
- 10.5 YEAR-WISE PLANNING OF MAINTENANCE FACILITY
- 10.6 REQUIREMENT OF MAINTENANCE / INSPECTION LINES FOR DEPOT-CUM- WORKSHOP
- 10.7 INSPECTION REQUIREMENTS AT DEPOT
- 10.8 DESIGN OF DEPOT- CUM- WORKSHOP FACILITIES
- 10.9 CAR DELIVERY AREA
- 10.10 OPERATIONAL FEATURES
- 10.11 INFRASTRUCTURE FACILITIES
- 10.12 LIST OF BUILDINGS
- 10.13 LIST OF PLANTS & EQUIPMENTS AT DEPOT- CUM- WORKSHOP

FIGURES

FIG 10.1	MAINTENANCE SCHEDULE
FIG 10.2	TRAIN CLEANING SCHEDULE
FIG 10.3	REQUIREMENT OF STABLING LINES (SBL), INSPECTION LINES (IBL) AND WORKSHOP LINES (WSL) NS CORRIDOR
FIG 10.4	REQUIREMENT OF STABLING LINES (SBL), INSPECTION LINES (IBL) AND WORKSHOP LINES (WSL) EW CORRIDOR
FIG 10.5	REQUIREMENT OF MAINTENANCE / INSPECTION LINES (NS CORRIDOR)
FIG 10.6	REQUIREMENT OF MAINTENANCE / INSPECTION LINES EW CORRIDOR)
FIG 10.7	REQUIREMENT OF WORKSHOP LINES NEAR DEPOT STATION FOR NS CORRIDOR
FIG 10.8	REQUIREMENT OF WORKSHOP LINES NEAR DEPOT STATION FOR EW CORRIDOR
FIG 10.9	LIST OF BUILDINGS AT DEPOT- CUM- WORKSHOP (NS CORRIDOR)
FIG 10.10	LIST OF BUILDINGS AT DEPOT- CUM- WORKSHOP (EW CORRIDOR)
FIG 10.11	LIST OF PLANTS & EQUIPMENTS AT DEPOT- CUM- WORKSHOP (NS CORRIDOR)
FIG 10.12	LIST OF PLANTS & EQUIPMENTS AT DEPOT- CUM- WORKSHOP (EW CORRIDOR)

Chapter - 10

MAINTENANCE DEPOT

10 MAINTENANCE DEPOT

10.1 NAGPUR METRO PROJECT CORRIDORS : The Nagpur Metro Project comprises of following corridors:

S. No.	Corridor	Gauge (mm)	Route Length (KMs)
1.	North-South Corridor	1435	19.658
2.	East-West Corridor	1435	18.266

10.2 DEPOT- CUM- WORKSHOP

- 10.2.1 (A) It is proposed to establish one depot- cum- workshop near Khapri Station for North South Corridor and one depot- cum- workshop in SRP Land near Lokmanya Nagar Station for East West Corridor with following functions:
 - a) <u>Depot- cum- workshop near Khapri Station for North South Corridor</u> (Line 1)
 - (i) Major overhauls of all the trains of Line 1.
 - (ii) All minor schedules and repairs of Line 1.
 - (iii) Lifting for replacement of heavy equipment and testing thereafter of Line 1.
 - (iv) Repair of heavy equipments of Line 1.
 - b) <u>Depot- cum- workshop in SRP Land near Lokmanya Nagar Station for</u> <u>East West Corridor (Line 2)</u>
 - (i) Major overhauls of all the trains of Line 2.
 - (ii) All minor schedules and repairs of Line 2.
 - (iii) Lifting for replacement of heavy equipment and testing thereafter of Line 2.

- (iv) Repair of heavy equipments of Line 2.
- **10.2.2** The Depot planning near Khapri Station for North South Corridor and in SRP Land near Lokmanya Nagar Station for East West Corridor is based on following assumptions:
 - (i) Enough space should be available near Khapri Station for North South Corridor and in SRP Land near Lokmanya Nagar Station for East West Corridor for establishment of a Depot- Cum- workshop
 - (ii) All inspection, workshop lines and stabling lines are designed to accommodate two trainsets of 3- car each.
 - (iii) All stabling lines are planned in the proposed depot-cum-workshop assuming adequate space availability. In case of space constraints, if any, stabling facilities may need to be created at terminal stations or elsewhere to cater to the required stability facilities.
 - (iv) Provision of transfer line from one corridor to another corridor.

In broad terms, based on the planned Rolling Stock requirements, this chapter covers conceptual design on following aspects and will work as a guide for detailed design later:

- Layout of Stabling-shed, Inspection-shed, minor repairs and heavy repair overhauling workshop and cleaning of Rolling Stock.
- Operational and functional safety requirements.
- Ancillary buildings for other maintenance facilities.
- Electrical & Mechanical Services, power supply and distribution system.
- Water Supplies, Drainage & Sewerage.

10.3 MAINTENANCE PHILOSOPHY

- Monitoring of the performance of equipment by condition monitoring of key parameters. The concept is to evolve the need based maintenance regime, which can be suitably configured in the form of schedules like daily check, "A" checks, "B" type checks, "IOH" and "POH".
- Labour intensive procedures are kept to the minimum. Automation with state of the art machinery to ensure quality with reliability.
- Multi skilling of the Maintenance staff to ensure quality and productivity in their performance.
- > Energy conservation is given due attention.

10.4 ROLLING STOCK MAINTENANCE NEEDS

10.4.1 Maintenance Schedule :The following maintenance schedule has been envisaged for conceptual design of depots assuming approx. 300 kms running

per train per day, taking in consideration the passenger load of 2016, 2021, 2026, 2031, 2036 and 2041 respectively.

Type of	Interval	Work Content	Locations
Schedule			
Daily	Daily	Check on the train condition and function at every daily service completion. Interval cleaning/mopping of floor and walls with vacuum cleaner.	Stabling Lines
"A" Service Check	5,000 Km (approx. 15 days)	Detailed inspection and testing of sub - systems, under frame, replacement/ topping up of oils & lubricants.	Inspection Bays
"B" Service Check	15,000 Km (approx. 45 days)	Detailed Inspection of 'A' type tasks plus items at multiples of 15,000 Km ('B' type tasks)	Inspection Bays
Intermediate Overhaul (IOH)	420,000 Km, (3 and half Years approx.)	Check and testing of all sub-assemblies (Electrical + Mechanical). Overhaul of pneumatic valves, Compressor. Condition based maintenance of sub- systems to bring them to original condition. Replacement of parts and rectification, trial run.	Workshop
Periodical Overhaul (POH)	840,000 Km, (7 Years approx.)	Dismantling of all sub-assemblies, bogies suspension system, traction motor, gear, control equipment, air- conditioning units etc. Overhauling to bring them to original condition. Checking repair and replacement as necessary. Inspection and trial.	Workshop
Heavy Repairs	-	Changing of heavy item such as bogies, traction motor, axles, gear cases & axle boxes etc.	Workshop

Table 10.1 : Maintenance Schedule

The above Schedule may need slight revision based on the actual earned kilometers per train and the specific maintenance requirements of Rolling Stock finally procured.

10.4.2 Washing Needs of Rolling Stock

Cleanliness of the trains is essential. Following schedules are recommended for Indian environment:

S.N.	Kind Insp	ection		Maint. Cycle	Time	Maintenance P	lace
1.	Outside washing	cleaning on au	(wet) tomatic	3 Days	10 mins.	Single Pass Automatic	through washing

Table 10.2 : Train Cleaning Schedule

3/29

S.N.	Kind Inspection	Maint. Cycle	Time	Maintenance Place
	washing plant)			plant of Depot
2.	Outside heavy Cleaning (wet washing on automatic washing plant and Front Face, Vestibule/Buffer area. Floor, walls inside/outside of cars and roof. Manually)	30 days	2 – 3 hrs.	Automatic washing plant & cleaning & washing shed

10.5 YEAR-WISE PLANNING OF MAINTENANCE FACILITY:

Year-wise planning of maintenance facility setup at depot cum workshop based on planned Rolling Stock requirement in TOP is tabulated below:

(i) Planned rakes as per TOP:

Year	No. of Rakes	No. of coaches
2016	11	33
2021	12	36
2026	15	45
2031	16	48
2036	18	54
2041	20	60

a) Planned rakes as TOP for N- S Corridor:

b) Planned rakes as TOP for E-W Corridor:

Year	No. of Rakes	No. of coaches
2016	12	36
2021	13	39
2026	15	45
2031	17	51
2036	18	54
2041	20	60

(ii) Average earning/day/rake based on TOP:

a) Average earning/day/rake for N- S Corridor:

Year	Average earning/day/rake
2016	269
2021	261
2026	270
2031	278
2036	267

2041 287		
	2041	287

 b) Average earning/day/rake for E- W Corridor 	b)	Average earn	ing/dav/rake for	E-W Corridor:
---	----	--------------	------------------	---------------

Year	Average earning/day/rake
2016	218
2021	213
2026	239
2031	233
2036	236
2041	254

- (iii) Requirement of Stabling Lines (SBL), Inspection Lines (IBL) and Workshop Lines(WSL) in the Depot
 - a) Requirement of Stabling Lines (SBL), Inspection Lines (IBL) and Workshop Lines (WSL) in the Depot -cum –Workshop near Khapri Station for North South Corridor.

Table 10.3 Requirement of Stabling Lines (SBL), Inspection Lines (IBL) and Workshop Lines (WSL) NS Corridor

Year	No. of Trains	SBLs	IBLs	WSLs
2016	11	6 lines x two trains of 3-car	One bay of 3 lines each with two trains of 3-cars each on each line with space earmarked for future extension	One bay of 3 lines each with two trains of 3-cars each on each line with space earmarked for future extension
2021	12	7 lines x two trains of 3-car	-do-	-do-
2026	15	8 lines x two trains of 3-car	-do-	-do-
2031	16	8 lines x two trains of 3-car	-do-	-do-
2036	18	9 lines x two trains of 3-car	-do-	-do-
2041	20	10 lines x two trains of 3-car	-do-	-do-

All lines shall be suitable for placement of two trains of 3-car trains on each line.

b) Requirement of Stabling Lines (SBL), Inspection Lines (IBL) and Workshop Lines (WSL) in the Depot -cum –Workshop in SRP Land near Lokmanya Nagar Station for East West Corridor.

Table 10.4 Requirement of Stabling Lines (SBL), Inspection Lines (IBL) and Workshop Lines (WSL) EW Corridor

Year	No. of Trains	SBLs	IBLs	WSLs
2016	12	6 lines x two trains of 3-car	One bay of 3 lines each with two trains of 3-cars each on each line with space earmarked for future extension	One bay of 3 lines each with two trains of 3-cars each on each line with space earmarked for future extension
2021	13	7 lines x two trains of 3-car	-do-	-do-
2026	15	8 lines x two trains of 3-car	-do-	-do-
2031	17	9 lines x two trains of 3-car	-do-	-do-
2036	18	10 lines x two trains of 3-car	-do-	-do-
2041	20	11 lines x two trains of 3-car	-do-	-do-

All lines shall be suitable for placement of two trains of 3-car trains on each line

10.6 REQUIREMENT OF MAINTENANCE / INSPECTION LINES FOR DEPOT-CUM-WORKSHOP

a) Requirement of maintenance / Inspection lines for depot-cum-workshop Depot -cum –Workshop near Khapri Station for North South Corridor (Line 1):

Schedule	Maintenance Requirement (No. of Cars)	Lines Needed
i) Year 2016 - N	laximum no. of rake l	holding is 11TS x3 (= 33 Cars)
'A' Checks (5000 km) approx. 15 days	(11X3) Cars = 33 Cars	1 Line x two trains of 3- cars(with Sunken Floor
'B' Checks (15000 km) approx. 45 days	(11X3) Cars = 33 Cars	1 Line x two trains of 3- cars(with Sunken Floor)

Table 10.5 ment of maintenance / Inspection lines (NS)

	Maintenance	
Schedule	Requirement (No. of Cars)	Lines Needed
Unscheduled line & adjustment lines	For minor repairs, testing and after IOH/POH adjustments	1 Line x two trains of 3- cars(with sunken Floor)
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future
ii) Year 2021 - N	laximum no. of rake l	holding is (12TS x3 = 36 Cars)
'A' Checks (5000 km) approx. 15 days	(12X3) Cars = 36 Cars	1 Lines X two trains of 3- cars(with sunken floor)
'B' Checks (15000 km) approx. 45 days	(12X3) Cars = 36 Cars	1 Lines X two trains of 3- cars(with sunken floor)
Unscheduled line & adjustment lines	For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Line X two trains of 3- cars(with sunken floor)
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future
iii) Year 2026 -M	aximum no. of rake h	olding is (15x3 = 45 Cars)
'A' Checks (5000 km) 15 days	(15X3) Cars = 45 Cars	1 Lines X two trains of 3- cars(with sunken floor)
'B' Checks (15000 km) 45 days	(15X3) Cars = 45 Cars	1 Lines X two trains of 3- cars(with sunken floor)
Unscheduled line & adjustment lines	For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Line X two trains of 3- cars(with sunken floor)
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future
iv) Year 2031 -M	aximum no. of rake h	olding is (16x3 = 48 Cars)
'A' Checks (5000 km) 15 days	(16X3) Cars = 48 Cars	1 Lines X two trains of 3- cars(with sunken floor)

	Meintenense			
Sahadula	Maintenance	Lines Needed		
Schedule	Requirement (No. of Cars)	Lines Needed		
'B' Checks (15000	(16X3) Cars = 48	1 Lines X two trains of 3- cars(with		
km) 45 days	Cars	sunken floor)		
Killy 40 days	Cars	Surker noor)		
Unscheduled line &	For minor repairs,	1 Line X two trains of 3- cars(with		
adjustment lines	testing &	sunken floor)		
,	adjustments post	,		
	major repairs / IOH			
	& POH			
Requirement		1 bay of 3 lines with provision of		
		space for additional bay of 3 lines		
		for work load in future		
v) Year 2036 -M	aximum no. of rake h	olding is (18x3 = 54 Cars)		
'A' Checks (5000	(18X3) Cars = 54	1 Lines X two trains of 3- cars(with		
km) 15 days	Cars	sunken floor)		
'B' Checks (15000		1 Lines X two trains of 3- cars(with		
km) 45 days	Cars	sunken floor)		
Unscheduled line &	For minor ropoiro	1 Line V two trains of 2 para(with		
adjustment lines	For minor repairs, testing &	1 Line X two trains of 3- cars(with sunken floor)		
	adjustments post	Surker noor)		
	major repairs / IOH			
	& POH			
Requirement		1 bay of 3 lines with provision of		
•		space for additional bay of 3 lines		
		for work load in future		
vi) Year 2041 -M	aximum no. of rake h	olding is (20x3 = 60 Cars)		
'A' Checks (5000	(20 X 3) Cars = 60	2 Lines X two trains of 3- cars(with		
km) 15 days	Cars	sunken floor)		
'B' Checks (15000	(20 X 3) Cars = 60	1 Lines X two trains of 3- cars(with		
km) 45 days &	Cars	sunken floor)		
Unscheduled line &	For minor repairs,			
adjustment lines	testing &			
	adjustments post			
	major repairs / IOH & POH			
Requirement		1 bay of 3 lines with provision of		
		space for additional bay of 3 lines		
		for work load in future		
All lines shall be suitable for placement of two 3- car trains on same line.				

All lines shall be suitable for placement of two 3- car trains on same line.

b) Requirement of maintenance / Inspection lines for depot-cumworkshop In SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

Requirement of maintenance / Inspection lines(EW Corridor)					
Schedule	Maintenance Requirement (No. of Cars)	Lines Needed			
i) Year 2016 - Maximum no. of rake holding is 12TS x3 (= 36 Cars)					
'A' Checks (5000 km) approx. 15 days	(12X3) Cars = 36 Cars	1 Line x two trains of 3- cars(with Sunken Floor			
'B' Checks (15000 km) approx. 45 days	(12X3) Cars = 36 Cars	1 Line x two trains of 3- cars(with Sunken Floor)			
Unscheduled line & adjustment lines	For minor repairs, testing and after IOH/POH adjustments	1 Line x two trains of 3- cars(with sunken Floor)			
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future			
ii) Year 2021 - N	laximum no. of rake l	holding is (13TS x3 = 39 Cars)			
'A' Checks (5000 km) approx. 15 days	(13X3) Cars = 39 Cars	1 Lines X two trains of 3- cars(with sunken floor)			
'B' Checks (15000 km) approx. 45 days	(13X3) Cars = 39 Cars	1 Lines X two trains of 3- cars(with sunken floor)			
Unscheduled line & adjustment lines	For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Line X two trains of 3- cars(with sunken floor)			
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future			
iii) Year 2026 -Maximum no. of rake holding is (15x3 = 45 Cars)					
'A' Checks (5000 km) 15 days	(15X3) Cars = 45 Cars	1 Lines X two trains of 3- cars(with sunken floor)			
'B' Checks (15000 km) 45 days	(15X3) Cars = 45 Cars	1 Lines X two trains of 3- cars(with sunken floor)			

 Table 10.6

 Requirement of maintenance / Inspection lines(EW Corridor)

Schedule	Maintenance Requirement (No. of Cars)	-ines Needed	
Unscheduled line & adjustment lines	For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Line X two trains of 3- cars(with sunken floor)	
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future	
iv) Year 2031 -Ma	aximum no. of rake h	olding is (17x3 = 51 Cars)	
'A' Checks (5000 km) 15 days	(17X 3) Cars = 51 Cars	1 Lines X two trains of 3- cars(with sunken floor)	
'B' Checks (15000 km) 45 days	(17X3) Cars = 51 Cars	1 Lines X two trains of 3- cars(with sunken floor)	
Unscheduled line & adjustment lines	For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Lines X two trains of 3- cars(with sunken floor)	
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future	
v) Year 2036 -Ma	aximum no. of rake h	olding is (18x3 = 54 Cars)	
'A' Checks (5000 km) 15 days	(18X3) Cars = 54 Cars	2 Lines X two trains of 3- cars(with sunken floor)	
'B' Checks (15000 km) 45 days & Unscheduled line & adjustment lines	(18X3) Cars = 54 Cars For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Lines X two trains of 3- cars(with sunken floor)	
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future	
vi) Year 2041 -Ma	aximum no. of rake h	olding is (20x3 = 60 Cars)	
'A' Checks (5000 km) 15 days	(20X3) Cars = 60 Cars	2 Lines X two trains of 3- cars(with sunken floor)	

10/29

Schedule	Maintenance Requirement (No. of Cars)	Lines Needed
'B' Checks (15000 km) 45 days & Unscheduled line & adjustment lines	(20X3) Cars = 60 Cars For minor repairs, testing & adjustments post major repairs / IOH & POH	1 Lines X two trains of 3- cars(with sunken floor)
Requirement		1 bay of 3 lines with provision of space for additional bay of 3 lines for work load in future

All lines shall be suitable for placement of two 3- car trains on same line

10.7 INSPECTION REQUIREMENTS AT DEPOTS NEAR KHAPRI STATION FOR NORTH SOUTH CORRIDOR (LINE-1) AND IN SRP LAND NEAR LOKMANYA NAGAR STATION FOR EAST WEST CORRIDOR (LINE-2):

Facilities for carrying out inspection activities shall be provided in the inspection bay for following Systems / Equipments of a train:

- Electronics; PA/PIS
- Mechanical components, couplers etc
- Batteries
- Air conditioner
- Brake modules
- Bogie
- Traction Motor
- Vehicle doors, windows and internal fittings
- Power system including converter, circuit breaker etc.

These activities shall be grouped into "A" checks and "B" checks. The minor scheduled inspections ("A" checks) shall be carried out during the day off peak and night. Since "B" checks take longer time, these cannot be completed in the off peak times. Certain inspection lines will be nominated for "A" checks. For "B" checks, separate line will be nominated where the rakes may be kept for long time.

One dedicated line in the shed will be used for minor repairs and for adjustment and testing after the IOH and POH. There shall be a spare line in inspection bay for this purpose.

10.8 DESIGN OF DEPOT- CUM- WORKSHOP FACILITIES

10.8.1 Stabling lines at depots near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

As per advised dimensions of the Rolling Stock, the length of 3-Car train would be Approx.67.8 mts. For the design of the stabling lines in the depot and terminal stations or elsewhere (as may be required), following approximates lengths have been taken in consideration:

- (i) Length of one 3- car rake= 67.8 m
- (ii) Gap between two trains 3-car rakes = 10m
- (iii) Free length at outer ends of two trains of 3- cars (for cross pathway, Signal and Friction buffers)= 10m each side
- (iv) Total length of Stabling lines = (iii)+(i)+(i)+(ii)+(iii)= 10+ 67.8+ 10+ 67.8+ 10= 165.6m ≈ 166m

Looking to the car width of 2700mm on SG, 5m "Track Centre" is proposed for all the stabling lines. Thus, space between stabling shall be sufficient to include 1 mt. wide pathway to be constructed between tracks to provide access for internal train cleaning and undercarriage inspection with provision of following facilities:

- a) Each Stabling line to have water connection facility so that local cleaning, if required, is facilitated.
 - b) Platforms at suitable points at each end of stabling lines to enable train operators to board or de- board conveniently.
- 10.8.2 Inspection Bay at depot-cum-workshop near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

The length of Inspection shed is computed as below:

- (i) Length of a 3-car rake= 67.8 m.
- (ii) Gap between two trains of 3- cars= 10 m
- (iii) Cross- path at each end= 10 m
- (iv)Length of Inspection line= (iii)+ (i)+(ii)+ (i)+ (iii) = 10+ 67.8 + 10+ 67.8 + 10= 165.6m ≈ 166m

The width of the Inspection bay in computed as below:

- (i) Centre to- centre spacing between the three lines= 7.5 m
- (ii) Centre line of outer lines to column of Shed= 3m

(iii) Width of a 3 line Inspection Bay= (ii)+(i)+(i)+(ii)= 3+7.5+7.5+3=21 m

- a) There shall be one inspection bay of 166 m X 21 m size each with provision of accommodating three inspection lines each having sunken floor and overhead roof inspection platforms at each of the depot. The floor will be sunken by 1100mm. The track spacing between the adjacent IBLs shall be 7.5 m. For rake requirements in future, there shall be provision of space for extension by one bay of three lines to cater the workload of inspection in future.
- b) Roof Inspection platforms and walkways for roof inspection supported on the columns shall be provided. There would be lighting below the rail level to facilitate the under frame inspection. Ramps of 1:8 slopes, 3 meter wide should be provided with sunken floor system for movement of material for the cars. Further, 10m cross pathways are left at each end for movement of material by fork lifter/Leister/Hand trolley. 415V 3 phase 50 Hz, 230V 1 phase 50 Hz AC supply and Pneumatic supply shall also be made available on each inspection shed columns. Air-circulators shall be provided on each column. The inspection bay shall be provided with EOT crane of 1.5 T to facilitate lifting of equipment.

Roof and walls shall be of such design that optimum natural air ventilation occurs all the time and sufficient natural light is also available. Each Inspection bay will also have arrangement close by for cleaning of HVAC filter under high pressure water jet.

10.8.3 Workshop Shed depots near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

Requirement of workshop lines is planned as under:

a) Requirement of workshop lines near Khapri Station for North South Corridor (Line 1):

Table 10.7 :
Requirement of workshop lines near Khapri Station for North South
Corridor

Year	IOH & POH	Wheel / Bogie storage	Unsche dule repairs /lifting	Total	Remarks
2016	1	1 line of 3-car trains and free space of 3-car length for storage of other equipments	1 line x two trains of 3-car	3- line s	The size of workshop shall be the same as inspection bay i.e. 166X21 m with one working bay comprising of two trains lines capable of accommodating two trains 3-car rakes with Bogie turning facility, one line of 3- car rake length with free space of 3-car rake length for storage of wheel/ bogie/ equipments etc.
2021	1	-do-	1	3- lines	
2026	1	-do-	1	3- lines	
2031	1	-do-	1	3- lines	
2036	1	-do-	1	3- lines	
2041	1	-do-	1	3- lines	

b) Requirement of workshop lines in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

Table 10.8 :				
Requirement of workshop lines near Khapri Station for East West Corridor				

Year	IOH & POH	Wheel / Bogie storage	Unschedul e repairs /lifting	Total	Remarks
2016	1	1 line of 3-car trains and free space of 3-car length for storage of other equipments	1 line x two trains of 3- car	3- line s	The size of workshop shall be the same as inspection bay i.e. 166X21 m with one working bay comprising of two
2021	1	-do-	1	3- lines	trains lines capable of accommodating

NOV 2013

2026	1	-do-	1	3- lines	two trains 3-car rakes with Bogie turning
2031	1	-do-	1	3- lines	facility, one line of 3- car rake length with
2036	1	-do-	1	3- lines	free space of 3-car rake length for
2041	1	-do-	1	3- lines	storage of wheel/ bogie/ equipments etc.

- (a) There shall be one bay comprising of three lines each (as detailed in 'Remarks' above). Size of the workshop bay is proposed to be 166m x 21m. The unscheduled lifting and heavy repair line shall be fitted with jack system capable to lift the 3-Car unit simultaneously for quick change of bogie, thereby saving down time of Rolling Stock. The arrangement of jack system shall be such that lifting of any coach in train formation for replacement of bogie/equipments is also individually possible. One line shall be available for stocking of Bogies and wheels. These lines are to be provided with pits at regular intervals for inspection of undercarriage with turn tables. Each workshop bay shall be equipped with two trains 15T and 3T overhead cranes, each spanning the entire length of the workshop bay.
- (b) There shall be provided space for repairs of HVAC, Door, and Traction motor etc. repairs. Distinct spaces shall be earmarked for dismantling/repairs/ assembling and testing of each of these equipments. Related machinery for Overhauling / Repairs & testing activities of every equipment are also to be housed in the space earmarked.
- (c) There shall be washing and cleaning equipments on the workshop floor. Bogie test stand shall be provided in the workshop. Other heavy machinery shall also be suitably installed on the workshop floor. Air-circulators, lights, Powers supply points and compressed air supply line shall be provided on each workshop column.
- (d) Workshop lines shall be inter-linked through turn tables, each suitable for movement of a train in AWo (unloaded) condition and shall also be capable to rotate with a fully loaded bogie on it. Repair of heavy equipments such as air conditioners shall be so located so that it does not affect the movement inside workshop.
- (e) There shall be walkways on columns for roof inspections, along the workshop lines. These walkways shall not infringe with cars being lifted/ lowered by means of mobile jacks. Suitable space between the nearest exterior of a car

and farthest edge of the walkway has to be ensured to avoid conflict in lifting and lowering of cars.

- (f) The small component, bogie painting and battery maintenance cells will be located in the workshop with arrangement that fumes are extracted by suitable exhaust systems.
- (g) Workshop will have service building with array of rooms along its length. Total size is proposed to be 166 x 8m. These can be made by column and beam structure and architecture made of brick works. These shall cater for overhauling sections, offices, costly store item, locker rooms, toilets etc. Two trains opposite sides widthwise shall be open to facilitate natural air circulation and cross ventilation besides the egress & ingress for coaches. The sidewalls shall also have sufficient width of louvers for providing adequate ventilation.
- (h) There shall be space for bogie/ axle repair shop with necessary infrastructure for disassembly, overhead, assembly and testing of mechanical components of bogies/ axle. The repair shop shall be easily approachable from with the workshop for transportation of components.

Following equipment repair/overhaul facilities are planned in the workshop and wheel repairs shop at the workshops depots near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

- 1. Body furnishing
- 2. Bogie
- 3. Wheels
- 4. Traction Motors
- 5. Axle Box and Axle Bearing
- 6. Pantographs
- 7. Transformer, converter/inverter, circuit breaker
- 8. Battery
- 9. Air Compressor
- 10. Air-conditioner
- 11. Brake Equipment
- 12. Door actuators
- 13. Control and measuring equipments
- 14. Pneumatic equipment
- 15. Dampers and Springs
- 16. Couplers/Gangways
- 17. Coach Painting (Applicable only for Aluminum coaches, if any).

10.9 CAR DELIVERY AREA

There shall be rail connectivity between the Depot-cum- Workshop and mainline and all trains due for scheduled/ unscheduled works shall reach the depot-cum-Workshop by rail.

However in case of newly procured coaches, which are transported by road, these shall reach the Depot-cum Workshop by the road on trailers. To unload the coaches and bring them to the track, provision of space, along the side of shunting neck, has to be made for unloading of cars and other heavy materials. This area shall have an insulated track embedded in the floor facilitating the movement of road trawler, which brings in the cars. The length of the track embedded area shall be about 40m long. There should be enough space available for movement of heavy cranes for lifting of coaches. The unloading area should be easily accessible for heavy duty hydraulic trailers.

10.10 OPERATIONAL FEATURES

The rake induction and withdrawal to main line will be primarily from the stabling shed. Further, provisions are there for direct rake induction and withdrawal to main line from Inspection Shed/workshop area. Movement from depot to the main line is so planned that the headway of main line is not affected. Simultaneous receipt and dispatch of trains from depot to main line is feasible in the present site scenario. Both of these activities will be done effectively without effecting the train operation on the main line. The stabling lines would be interlocked with the main line thereby induction of train from the stabling would be safe and without loss of time. The proposition for a transfer track on the incoming line as well as on the outgoing line to facilitate the movement of rake in the depot by Operation Control Centre (OCC) even though the further path inside the depot is not clear shall be explored in the detailed design stage depending on the actual availability of land.

An emergency line is also provided from which an emergency rescue vehicle may be dispatched to main line in the event of emergency if necessary.

- **10.11 INFRASTRUCTURE FACILITIES :** Infrastructure Facilities in depots near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2)
 - I. Inspection and Workshop facilities: As indicated in 10.8.2 & 10.8.3 above.
 - II. Stabling Lines in Depot:
 - a) The requirement of lines shall be in accordance with the details indicated in para 10.8.1 above. A part of the stabling siding in the depot shall be covered with a roof in order to facilitate testing of air conditioning of trains and their pre-cooling under controlled condition of temperature.

b) Separate toilets adjustment to stabling lines shall be provided with small room for keeping cleaning aids and for utilization by the working staff.

III. Automatic Coach Washing Plant (AWP)

Provision to be made for Rolling Stock exterior surfaces to be washed using a fully automated Train Washing System, with a throughput capacity of approximately ten trains per hour. The AWP shall be situated at such a convenient point on the incoming route so that incoming trains can be washed before entry to the depot and undesirable movement/shunting over ingress and egress routes within the depot is avoided. Additional space for plant room for AWP system shall be earmarked alongside the washing apron as indicated at Para 10.12.1 (a) & 10.12.1 (b).

IV. Train Operators Booking Office

Suitable office facility adjacent to the stabling lines at each depot should be provided so that train operators reporting 'On' duty or going 'Off' duty can obtain updates regarding 'Special Notices', 'Safety Circulars' and other technical updates/information in vogue. These offices should have an attached a cycle/scooter/car stand facility for convenience of the train operating staff.

V. Test Track

A test track of 1000 mts. in length covered & fenced should be provided beside workshop in the depot. It shall be equipped with signaling equipments (ATP/ATO). It shall be used for the commissioning of the new trains, their trials and testing of the trains after the IOH and POH. Entry into the test track shall be planned for a 3-car train. In compliance to safety norms, the boundary of the track shall be completely fenced to prevent unauthorized trespassing across or along the track.

VI. Heavy Cleaning Shed

Monthly heavy cleaning of interior walls, floors, seats, windows glasses etc, outside heavy cleaning, Front/rear Face, Vestibule/ Buffer area, outside walls and roof shall be done manually in the interior cleaning plant designed for cleaning of one at a time. A line adjacent to inspection shed should be so provided that placement of rakes is possible from workshop or inspection lines & vice – versa conveniently and with ease.

VII. Power Supply

Auxiliary substations are planned for catering to the power supply requirement of the whole depot and workshop. Details of connected load feeder shall be worked out. Taking diversity factor of 0.5 the maximum demands shall be computed. Two trains Auxiliary substations are proposed, as the demand by machines in Workshop area would be very large. The standby power supply is proposed through DG set with AMF panel. The capacity of DG set will be adequate to supply all essential loads without over loading.

VIII. Compressed Air Supply

Silent type compressor units shall be suitably installed inside the depots at convenient location for the supply of compressed air to workshop and Inspection sheds. Thus, the pneumatic pipeline shall run within the workshop and inspection bays as to have compressed air supply line at all convenient points.

IX. Water Supply, Sewerage and Drainage Works

In house facilities shall be developed for the water supply of each depot. Sewerage, storm water drainage shall be given due care while designing the depots for efficient system functioning. Past records of Municipal Corporation shall be used to design the drainage system. Rainwater harvesting would be given due emphases to charge the under ground reserves.

X. Ancillary Workshop

This workshop will have a line at floor level with provision of pits. Arrangement for repairs of Shunters, Rail Road Vehicles and other ancillary vehicles will be provided. These vehicles will also be housed here itself. Heavy lifting works can be carried out in main workshop.

Ancillary workshop will be used for storing OHE/rigid OHE parts and their maintenance/ repair for restoration of 25 kV feed system.

XI. Watch Towers

There shall be provision of adequate number of watchtowers for the vigilance of depot boundary.

XII. Administrative Building

An administrative building close to the main entrance is planned. It can be suitably sized and architecturally designed at the detailed design stage. A time and security office is also provided close to main entrance. It shall be equipped with suitable Access control system for all the staff working in the complex.

XIII. Parking Facilities

- a) Ample parking space shall be provided for the two trains wheelers and four wheelers at the following points.
 - i) Close to the depot entry.
 - ii) Close to the stabling lines.
 - iii) Close to the Workshop/IBL.
- b) Space for parking of road and re-railing equipments Enough space for parking of road vehicle/ trailers/ trucks etc. Enough space will also have to be earmarked adjacent to workshops. Similarly, provision of space for parking of re-railing equipments will have to be made close to the main exit gate of the Depot.

XIV. Shed and Buildings

The shed and buildings normally provided in the depot with their sizes and brief functions are indicated in Para 10.12.1 (a) & 10.12.1 (b). At the detailed design stage depending upon the land availability, the decision to locate these buildings can be taken. These can then be architecturally and functionally grouped.

XV. Plant and Machinery

- a) A separate building is planned for housing pit wheel lathe (PWL), approachable from workshop, inspection bay and stabling lines through rail and road for placement of cars for re- profiling of wheels within the depot along with space for depot of scrap.
- b) Requirement of buildings and major plants and machinery, is given in Para 10.12.1(a), 10.12.1 (b), Para 10.12.2 (a) & 10.12.2(b).

10.11.1 Following Safety features should be incorporated in the design of the Maintenance Depot-cum-Workshop near Khapri Station for North South Corridor (Line-1) and in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

- a) 1.5 EOT cranes in the inspection bay should be interlocked with 25 kV ac OHE in such a way that, the cranes become operational only when the OHE is isolated and grounded.
- b) Red flasher lights should be installed along the inspection lines at conspicuous location to indicate the OHE is 'Live'.
- c) Multi level wheel and TM stacking arrangement should be an inbuilt feature at the end of Workshop Lines.
- d) Pillars in the inspection bay & workshop should have provision for power sockets.
- e) Placement of rakes from inspection/workshop lines on to washing lines for interior cleaning on their own power should be possible. Linking of OHE

and its isolation at the cleaning area should be provided. Necessary requirements of safety should be kept in view.

- f) The roof inspection platform should have open-able doors to facilitate staff to go up the roof for cleaning of roof. Suitable safety interlock should be provided to ensure maintenance staff are enabled to climb on the roof inspection platform only after the OHE is isolated.
- g) Control Centre, PPIO & store depot must be close to Workshop.
- h) Width of the doors of the sections wherein repairs of equipments are done should be at least 2 meters wide to allow free passage of equipment through them.
- i) Provision of water hydrants should be done in workshops & stabling yards also.
- j) Compressed air points along with water taps should be available in interior of buildings for cleaning.
 - k) Ventilation arrangement inside the inspection shed and workshop should be ensured. Arrangement for natural cross ventilation from one side to another of inspection & workshop bays to be incorporated along with optimum availability of natural light at floor level.

10.12 LIST OF BUILDINGS

10.12.1 List of Buildings at Depot- Cum- Workshop at Khapri Station near Khapri Station for North South Corridor (Line) :

S.No	Name of Building	Size	Remarks	
	Inspection Shed	 166m x 21m One way of 3 lines (2 trains of 3- cars in each line) 		
1.	Workshop Shed	166m x 21m	Major repair & overhaul of rolling stocks, diesel shunters, electric tractors, tower wagons. All heavy lifting jobs.	
	Associated 166m x 8m		Rooms for carrying out the inspection & workshop activity.	
	Stabling line shed	166m x 55m (for 20 trains)	Provisional for total area as per requirement of stabling of 20 rakes during year 2041 is to be made (with initial provision for 12 rakes only).	

Table 10.9List of Buildings at Depot- Cum- Workshop (NS Corridor)

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

	Name of	0	
S.No	Building	Size	Remarks
2.	Stores Depot & Offices including Goods Platform with Ramp	45m x 45m	 i. Stocking of spares for regular & emergency requirement including consumable items. ii. This store caters for the requirement of depot for rolling stock & other disciplines. iii. To be provided with computerized inventory control. iv. Loading/Unloading of material received by road.
3.	Elect. Substation & DG set room	20m x 15m	To cater for normal and emergency power supply for depot, workshop, service and all other ancillary buildings, essential power supply for essential loads and security light.
4.	Traction repair depot and E &M repair shop	80m x 30m (partly double storey)	Stabling and routine maintenance of shunting engine etc. & Traction maintenance depot. For maintenance of lifts/escalators and other General service works.
5.	Cycle / Scooter / Car Parking	100m x 6m 60m x 6m	i. Close to the depot entry.ii. Close to the stabling lines.
6.	Auto coach washing plant	40m x 10m	For automatic washing of coaches. Provision of Washing apron for collection of dripping water and its proper drainage to be ensured.
7.	Washing apron for Interior Cleaning	166m x 6.5m	Heavy wet washing of rakes from inside, under frame, roof at 30 days interval.
8.	P-way office, store & Workshop including Welding plant	80m x 20m	 i. For track maintenance of section and depot. ii. To weld rails for construction period only. iii. To stable track Tamping machine.
9.	Security office & Time Office Garages (4 Nos.)	15m x 8m	For security personnel. For time punching For parking vehicle jeep, truck etc.
10.	Check Post (2 Nos.)	5m x 3m	For security check of incoming/outgoing staff material and coaches.
11.	Watch Tower (4 Nos.)	3.6m x2.5 m	For security of the depot especially during night time.
12.	Depot control centre & Crew booking centre	25mx20m (double storey)	To control movement of trains in and out of the depot and for crew booking.
13.	O.H raw water	1,00,000 Ltrs.	For Storage of water.

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

S.No	Name of Building	Size	Remarks
	Tank	Capacity	
14.	Pump house Bore well	7.3mx5.4m (200 mm bore)	Submersible type pump planned with 200 mm diameter bore well.
15.	Dangerous goods Store	15m x 10m	For Storage of paints, inflammables & Lubricants
16.	a)Traction 25/33kV/66kV sub station b) Feeding Post	a)120m x 80m b) 15m x30m	Traction Power Supply
17.	Waste Collection Bin	10m x 10m	Garbage dumping
18.	Repair shops for S & T	40m x 20m	For the AFC gates, Signaling and telecom equipment.
19.	Work shop Manager Office	30m x 20m	Office of Depot in charge
20.	ATP & ATO Room	10m x 8m	To keep equipments of ATP/ATO
21.	Waste Water Treatment Plant	12m x 6m	For treating the discharge waters of the depot and remove the oil, acids etc. before discharging into the river, with U/G tank.
22.	Canteen	200 sqm.	To cater staff of depot and workshop. Should be in a separate building with modern kitchen ware and facilities. Obligatory as per statutory requirements.
23.	Toilets -Gents -Ladies	10m x 7m 10m x 7m	These toilets shall be approachable both from workshop as well as from inspection bay and ladies toilets shall be completely insulated from gent's toilet.

10.12.1 List of Buildings at Depot- Cum- Workshop at Khapri Station in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2)

Table 10.10	
List of Buildings at Depot- Cum- Workshop (EW Corridor	·)

S.No	Name of Building	Size	Remarks
1.	Inspection Shed	lines (2	Servicing of Cars for 15 days & 45 days inspection. This shed will have scope of expansion by 3 lines (1 additional bay of 3 lines for future requirement).

S.No	Name of	Size	Remarks
3.110	Building	3126	Remarks
	Workshop Shed	166m x 21m	Major repair & overhaul of rolling stocks, diesel shunters, electric tractors, tower wagons. All heavy lifting jobs.
Associated Sections Stabling line shed		166m x 8m 166m x 60m (for 23 trains)	Rooms for carrying out the inspection & workshop activity. Provisional for total area as per requirement of stabling of 23 rakes during year 2041 is to be made (with initial provision for 13 rakes only).
2.	Stores Depot & Offices including Goods Platform with Ramp	45m x 45m	 i. Stocking of spares for regular & emergency requirement including consumable items. ii. This store caters for the requirement of depot for rolling stock & other disciplines. iii. To be provided with computerized inventory control. iv. Loading/Unloading of material received by road.
3.	Elect. Substation & DG set room	20m x 15m	To cater for normal and emergency power supply for depot, workshop, service and all other ancillary buildings, essential power supply for essential loads and security light.
4.	Traction repair depot and E &M repair shop	80m x 30m (partly double storey)	Stabling and routine maintenance of shunting engine etc. & Traction maintenance depot. For maintenance of lifts/escalators and other General service works.
5.	Cycle / Scooter / Car Parking	100m x 6m 60m x 6m	iii. Close to the depot entry.iv. Close to the stabling lines.
6.	Auto coach washing plant	40m x 10m	For automatic washing of coaches. Provision of Washing apron for collection of dripping water and its proper drainage to be ensured.
7.	Washing apron for Interior Cleaning	166m x 6.5m	Heavy wet washing of rakes from inside, under frame, roof at 30 days interval.
8.	P-way office, store & Workshop including Welding plant	80m x 20m	 iv. For track maintenance of section and depot. v. To weld rails for construction period only. vi. To stable track Tamping machine.
9.	Security office &	15m x 8m	For security personnel.

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

S.No	Name of	Size	Remarks
•	Building	••	
	Time Office		For time punching
	Garages (4 Nos.)		For parking vehicle jeep, truck etc.
10.	Check Post (2	5m x 3m	For security check of incoming/outgoing
	Nos.)		staff material and coaches.
11.	Watch Tower (4 Nos.)	3.6m x2.5 m	For security of the depot especially during night time.
12.	Depot control	25mx20m	To control movement of trains in and out
12.	centre & Crew booking centre	(double storey)	of the depot and for crew booking.
13.	O.H raw water Tank	1,00,000 Ltrs. Capacity	For Storage of water.
14.	Pump house Bore well	7.3mx5.4m (200 mm bore)	Submersible type pump planned with 200 mm diameter bore well.
15.	Dangerous goods	15m x 10m	For Storage of paints, inflammables &
	Store		Lubricants
16.	a)Traction 25/33kV/66kV sub station b) Feeding Post	a)120m x 80m b) 15m x30m	Traction Power Supply
17.	Waste Collection Bin	10m x 10m	Garbage dumping
18.	Repair shops for S & T	40m x 20m	For the AFC gates, Signaling and telecom equipment.
19.	Work shop Manager Office	30m x 20m	Office of Depot in charge
20.	ATP & ATO Room	10m x 8m	To keep equipments of ATP/ATO
21.	Waste Water Treatment Plant	12m x 6m	For treating the discharge waters of the depot and remove the oil, acids etc. before discharging into the river, with U/G tank.
22.	Canteen	200 sqm.	To cater staff of depot and workshop. Should be in a separate building with modern kitchen ware and facilities. Obligatory as per statutory requirements.
23.	Toilets	10m x 7m	These toilets shall be approachable both
	-Gents	10m x 7m	from workshop as well as from
	-Ladies		inspection bay and ladies toilets shall be completely insulated from gent's toilet.

10.13 LIST OF PLANTS & EQUIPMENTS AT DEPOT-CUM-WORKSHOP

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

10.7.6.1 List of Plants & Equipments at Depot-cum-Workshop near Khapri Station for North South Corridor (Line 1):

S.	Equipment	Qty.	Unit
No.			
1.	Under floor Pit wheel lathe, Chip crusher and conveyor	1	No.
	for lathe on pit, Electric tractor for movement over		
	under floor wheel lathe		
2.	Under floor lifting systems for 3-car unit for	1	Set
	replacement of bogie		
3.	Mobile jacks 15T for lifting cars (set of 12 jacks)	1	No.
4.	Rerailing equipment consisting of rail cum road vehicle	1	Set
	and associated jack system etc.		
5.	Run through type Automatic Washing plant for Metro	1	No.
	cars.		
6.	Rail fed Bogie wash plant	1	No.
7.	Bogie test stand	1	No.
8.	Work lift platform	4	No.
9.	Electric bogie tractor for pulling cars and bogies inside	1	No.
	workshop		
10.	Chemical cleaning tanks, ultrasonic cleaning tanks, etc	1	Set
11.	Compressor for Inspection shed & shop air supply	2	No.
12.	(i) Travelling O/H crane Workshop 15T/3 T	2	No.
	(ii) 1.5T Capacity (IBL):- 2 Nos.	2	No.
13.	Mobile jib crane	2	No.
14.	Mobile lifting table	4	No.
15.	Carbody stands	24	No.
16.	Bogie turn tables	2	No.
17.	Underframe & Bogie blowing plant & small	2	No.
	parts/equipment		
18.	AC filter cleaning machine	1	No.
19.	Portable cleaning plant for rolling stock	1	No.
20.	High-pressure washing pump for front and rear end	2	No.
	cleaning of car		
21.	Industrial furniture (Work Test Benches)	1	L.s.
22.	Minor diagnostic equipment and collective tools	-	Set
23.	Induction heater	1	No.
24.	Oven for the motors	1	No.
25.	EMU battery charger	2	No.
26.	Welding equipments (Mobile welding, oxyacetylene,	2	Set
	fixed arc welding)		
27.	Electric and pneumatic tools	-	Set

Table 10.11List of Plants & Equipments at Depot- Cum- Workshop (NS Corridor)

S.	Equipment	Qty.	Unit
No.			
28.	Measuring and testing equipment	-	Set
29.	Tool Kits	-	Set
30.	Mobile safety steps	12	No.
31.	Fork lift tractor	2	No.
32.	Pallet trucks	6	No.
33.	RRV	1	
34.	Road vehicles (pickup van/ truck)	1	Set
35.	Miscellaneous office equipments	-	Set
36.	Vertical Boring Mainline for wheel discs	1	No.
37.	Press for removal and pressing of the wheel on axles	1	No.
38.	Axle journal turning and burnishing lathe	1	No.
39.	Special jigs and fixtures and test benches for Rolling Stock	1	set
40.	Stackers (1T for DCOS)	2	No.
41.	Storage Racks (W/shop & DCOS stores)	1	Set
42.	Test benches	1	Set
43.	Auto panto strip thickness meter		-
44.	Vehicle mounted crane		-
45.	Impulse Tester for TMs		-
46.	Bearing puller		-

10.13.2 List of Plants & Equipments at Depot-cum-Workshop in SRP Land near Lokmanya Nagar Station for East West Corridor (Line-2):

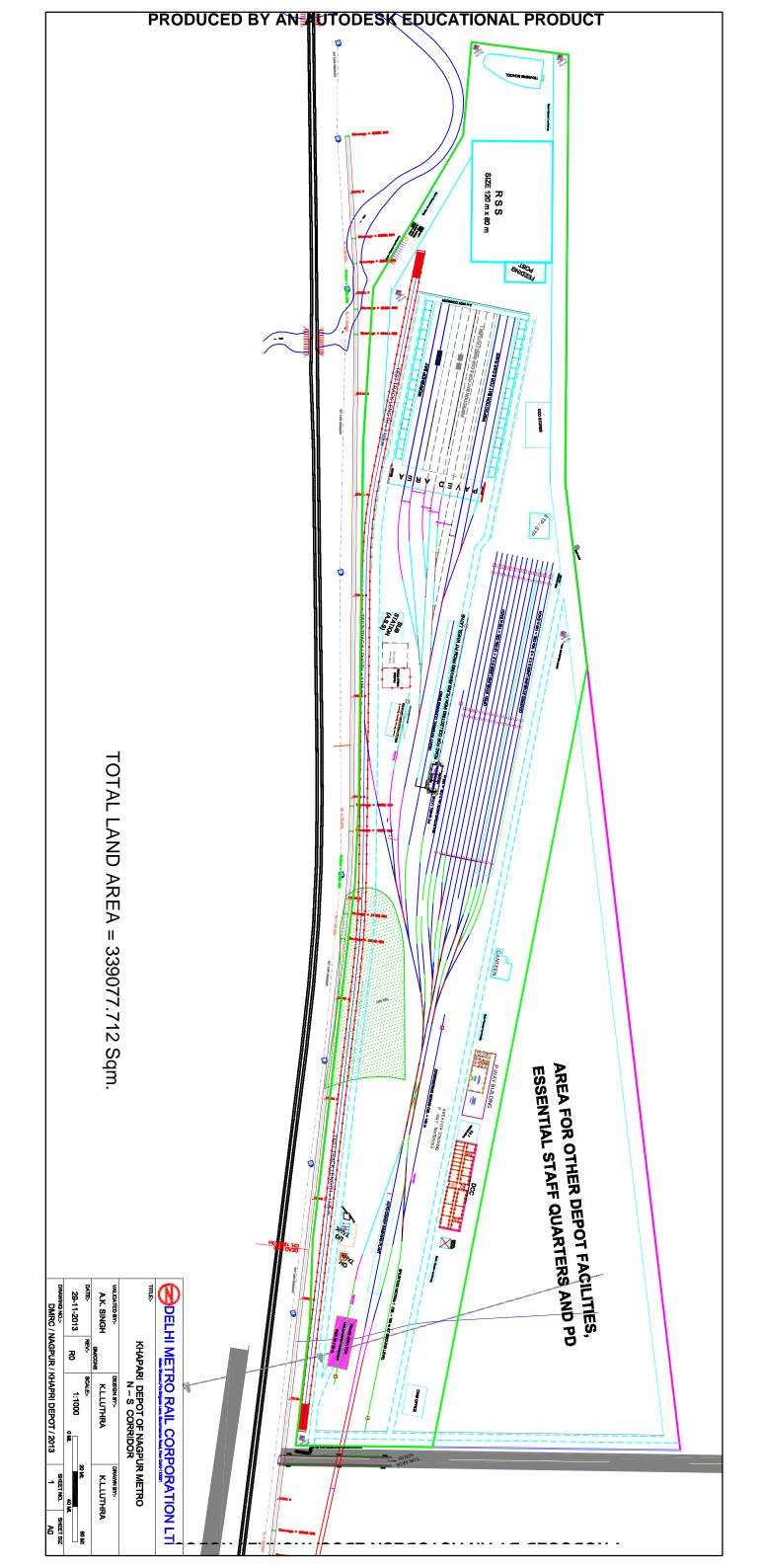
Table 10.12
List of Plants & Equipments at Depot- Cum- Workshop (EW Corridor)

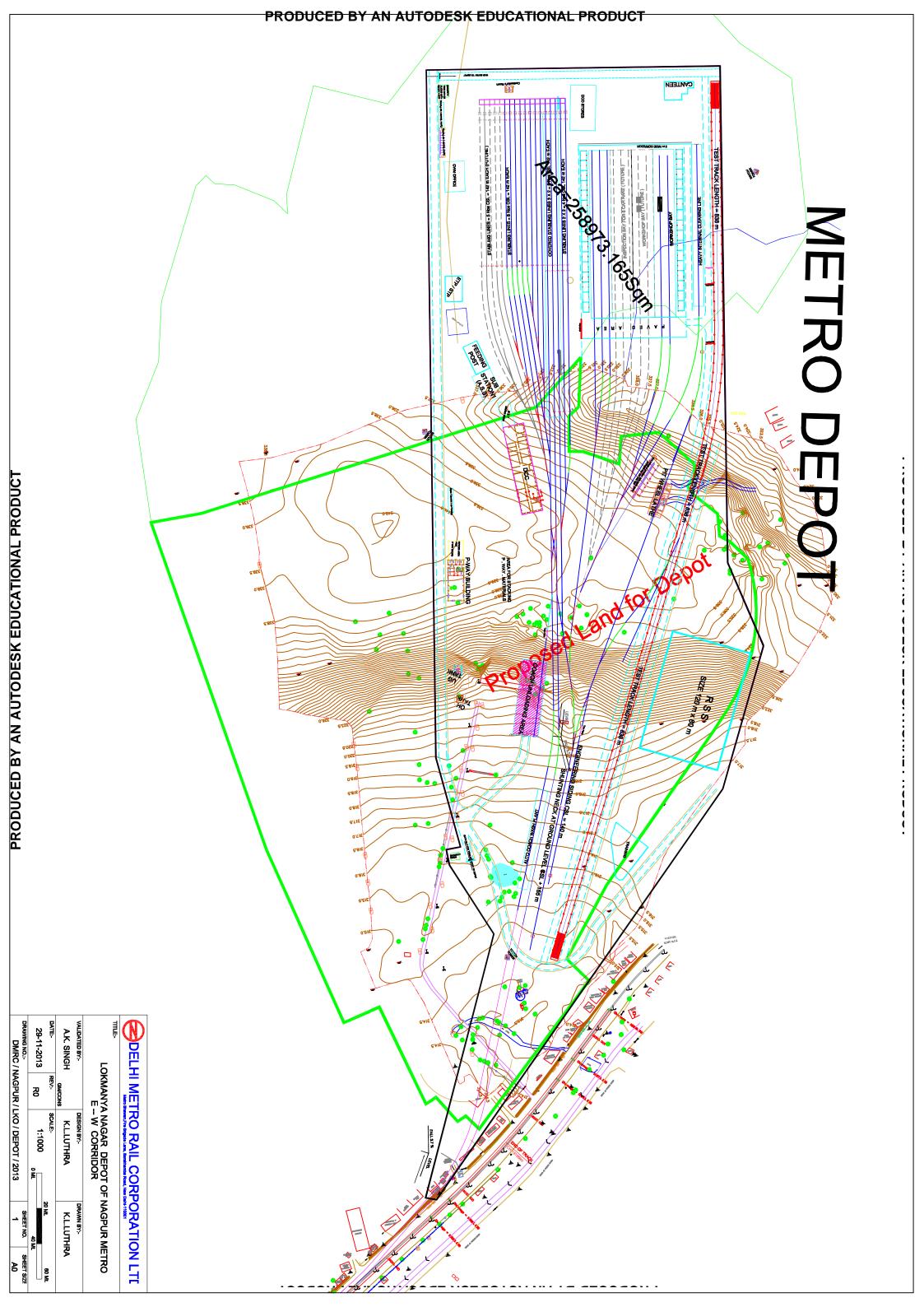
S. No.	Equipment	Qty.	Unit
1.	Under floor Pit wheel lathe, Chip crusher and conveyor for lathe on pit, Electric tractor for movement over under floor wheel lathe	1	No.
2.	Under floor lifting systems for 3-car unit for replacement of bogie	1	Set
3.	Mobile jacks 15T for lifting cars (set of 12 jacks)	1	No.
4.	Rerailing equipment consisting of rail cum road vehicle and associated jack system etc.	1	Set
5.	Run through type Automatic Washing plant for Metro cars.	1	No.
6.	Rail fed Bogie wash plant	1	No.
7.	Bogie test stand	1	No.
8.	Work lift platform	4	No.
9.	Electric bogie tractor for pulling cars and bogies inside workshop	1	No.

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

S. No.	Equipment	Qty.	Unit	
10.	Chemical cleaning tanks, ultrasonic cleaning tanks, etc	1	Set	
11.	Compressor for Inspection shed & shop air supply	2	No.	
	(i) Travelling O/H crane Workshop 15T/3 T	2	No.	
12.	(ii) 1.5T Capacity (IBL):- 2 Nos.	2	No.	
13.	Mobile jib crane	2	No.	
14.	Mobile lifting table	4	No.	
15.	Carbody stands	24	No.	
16.	Bogie turn tables	2	No.	
17.	Underframe & Bogie blowing plant & small parts/equipment	2	No.	
18.	AC filter cleaning machine	1	No.	
19.	Portable cleaning plant for rolling stock	1	No.	
20.	High-pressure washing pump for front and rear end cleaning of car	2	No.	
21.	Industrial furniture (Work Test Benches)	1	L.s.	
22.	Minor diagnostic equipment and collective tools	-	Set	
23.	Induction heater	1	No.	
24.	Oven for the motors	1	No.	
25.	EMU battery charger	2	No.	
26.	Welding equipments (Mobile welding, oxyacetylene, fixed arc welding)	2	Set	
27.	Electric and pneumatic tools	-	Set	
28.	Measuring and testing equipment	-	Set	
29.	Tool Kits	-	Set	
30.	Mobile safety steps	12	No.	
31.	Fork lift tractor	2	No.	
32.	Pallet trucks	6	No.	
33.	RRV	1		
34.	Road vehicles (pickup van/ truck)	1	Set	
35.	Miscellaneous office equipments	-	Set	
36.	Vertical Boring Mainline for wheel discs	1	No.	
37.	Press for removal and pressing of the wheel on axles		No.	
38.	Axle journal turning and burnishing lathe	1	No.	
39.	Special jigs and fixtures and test benches for Rolling Stock	1	set	
40.	Stackers (1T for DCOS)	2	No.	
41.	Storage Racks (W/shop & DCOS stores)	1	Set	
42.	Test benches	1	Set	

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT




Chapter 10: MAINTENANCE DEPOT

S. No.	Equipment	Qty.	Unit
43.	Auto panto strip thickness meter		-
44.	Vehicle mounted crane		-
45.	Impulse Tester for TMs		-
46.	Bearing puller		-

CHAPTER 11

SIGNALLING SYSTEM

- 11.1 SIGNALLING
- 11.2 SIGNALLING AND TRAIN CONTROL
- 11.3 SPACE REQUIREMENT FOR SIGNALLING INSTALLATIONS
- 11.4 MAINTENANCE PHILOSOPHY FOR SIGNALLING SYSTEMS

TABLES

TABLE 11.1SIGNALLING SYSTEM STANDARDS

Chapter - 11

SIGNALLING SYSTEM

11.0 SIGNALLING

11.1 Introduction

The signaling system shall provide the means for an efficient train control, ensuring safety in train movements. It assists in optimization of metro infrastructure investment and running of efficient train services on the network.

11.2 SIGNALLING AND TRAIN CONTROL

11.2.1 Overview

Metro carries large number of passengers at a very close headway requiring a very high level of safety enforcement and reliability. At the same time heavy investment in infrastructure and rolling stock necessitates optimization of its capacity to provide the best services to the public. These requirements of the metro are planned to be achieved by adopting 'CATC' (Continuous Automatic Train Control System) based on "CBTC" (Communication based Train Control System) which includes ATP (Automatic Train Protection), ATO (Automatic Train Operation) and ATS (Automatic Train Supervision) sub-systems using radio communication between Track side and Train.

This will:

- Provide high level of safety with trains running at close headway ensuring continuous safe train separation and for bidirectional working.
- Eliminate accidents due to driver passing Signal at Danger by continuous speed monitoring and automatic application of brake in case of disregard of signal / warning by the driver.
- Provides safety and enforces speed limit on section having permanent and temporary speed restrictions.
- Improve capacity with safer and smoother operations. Driver will have continuous display of Target Speed / Distance to Go status in his cab enabling him to optimize

the speed potential of the track section. It provides signal / speed status in the cab even in bad weather.

- Increased productivity of rolling stock by increasing line capacity and train speeds, and enabling train to arrive at its destination sooner. Hence more trips will be possible with the same number of rolling stock.
- Improve maintenance of Signalling and telecommunication equipments by monitoring system status of trackside and train born equipments and enabling preventive maintenance.

Signalling & Train Control system on the line shall be designed to meet the required headway during peak hours.

Radio for CBTC shall work in License free ISM band.

11.2.2 System Description and Specifications

The Signalling and Train Control system shall be as below. Sub-system/ components will conform to international standards like CENELEC, IEEE, IEC, BS, IS, ITU-T etc:

a. Continuous Automatic Train Control

Continuous Automatic Train Control based on CBTC will consist of - ATP (Automatic Train Protection), ATO (Automatic Train Operation) and ATS (Automatic Train Supervision) sub-systems:

(i) Automatic Train Protection (ATP)

Automatic Train Protection is the primary function of the train control systems. This subsystem will be inherently capable of achieving the following objectives in a fail-safe manner. Line side signals will be provided at diverging routes (i.e. at points & crossings) as well as other required locations, which shall serve as backup signalling in case of failure of ATP system.

- Cab Signalling
- Track Related Speed Profile generation based on line data and train data continuously along the track
- Continuous monitoring of braking curve with respect to a defined target point
- Monitoring of maximum permitted speed on the line and speed restrictions in force
- Detection of over-speed with audio-visual warning and application of brakes, if necessary
- Maintaining safety distance between trains
- Monitoring of stopping point
- Monitoring of Direction of Travel and Rollback

The cab borne equipment will be of modular sub-assemblies for each function for easy maintenance and replacement. The ATP assemblies will be fitted in the vehicle integrated with other equipment of the rolling stock.

(ii) Automatic Train Operation (ATO)

This system will operate the trains automatically from station to station while remaining within the safety envelope of ATP & open the train doors. Driver will close the train doors and press a button when ready to depart. In conjunction with ATP/ ATS, ATO can control dwell time at stations and train running in accordance with headway/ timetable.

(iii) Automatic Train Supervision (ATS)

A train supervision system will be installed to facilitate the monitoring of train operation and also remote control of the station. The train supervision will log each train movement and display it on the workstations with each Traffic Controller at the OCC and on one workstation placed in the Station Control room (SCR) with each Station Controller.

The centralized system will be installed in the Operation Control Centre. The OCC will have a projection display panel showing a panoramic view showing the status of tracks, points, signals and the vehicles operating in the relevant section/ whole system. ATS will provide following main functionalities:

- Automatic Route setting
- Automatic Train Regulation
- Continuous Tracking of train position
- Display Panel & Workstation interface
- Link to Passenger Information Display System for online information
- Computation of train schedules & Timetable

b. Interlocking System:

(i) Computer Based Interlocking (CBI)

The entire line including turnback track, transfer track, sidings will be equipped with CBI system for operation of points and crossings and setting of routes.

The setting of the route and clearing of the signals will be done by workstation, which can be either locally (at station) operated or operated remotely from the OCC.

This sub-system is used for controlling vehicle movements into or out of stations automatically from a workstation. All stations having points and crossings will be provided with workstations for local control. Track occupancy, point position, etc. will be clearly indicated on the workstation. It will be possible to operate the workstation locally, if the central control hands over the operation to the local station. The interlocking system design will be on the basis of fail-safe principle.

The equipment will withstand tough environmental conditions encountered in a Mass Transit System. Suitable IS, IRS, BS standards or equivalent international standards will be followed in case wiring, installation, earthing, cabling, power supply and for material used in track circuits, axle counters, relays, point operating machines, power supply etc.

(ii) Track Vacancy Detection

Primary mode for track vacancy detection system on main line may be through radio and for secondary detection it can be through Track circuit / Axle Counter.

(iii) Signals

- Line side Signals: Multi Aspect Colour Light (LED) type Line side signals shall be installed on the Main Line and depot entry/ exit.
 - (a) At stations with point and crossing for point protection catering for bidirectional working
 - (B) At departure location at stations for normal direction of working

(iv) Point Machines

Non-Trailable Electrical Point Machine capable of operating with either 110V DC or 3phase 380V AC will be used on main line. The depot point machine will preferably be trailable type.

c. Train Depot: Signalling

All depot lines except the one which is used for shunting and in the workshop shall be interlocked. A workstation shall be provided in the Depot Control Centre for electrical operation of the points, signals and routes of the depot yard. Audio Frequency Track Circuits/ Axle Counter will be used in the depot as well.

d. Signalling Scheme Plan

Conceptual Signalling Scheme Plan based on P. Way Plan dated 16.01.2013 for Line -1 and Line -2 of Nagpur Metro Rail Project from "Automative Sqre to Khapri (Line -1) and Prajapati Nagar to Lokmanya Nagar (Line -2) is enclosed at Annexure 1.

11.2.3 Standards

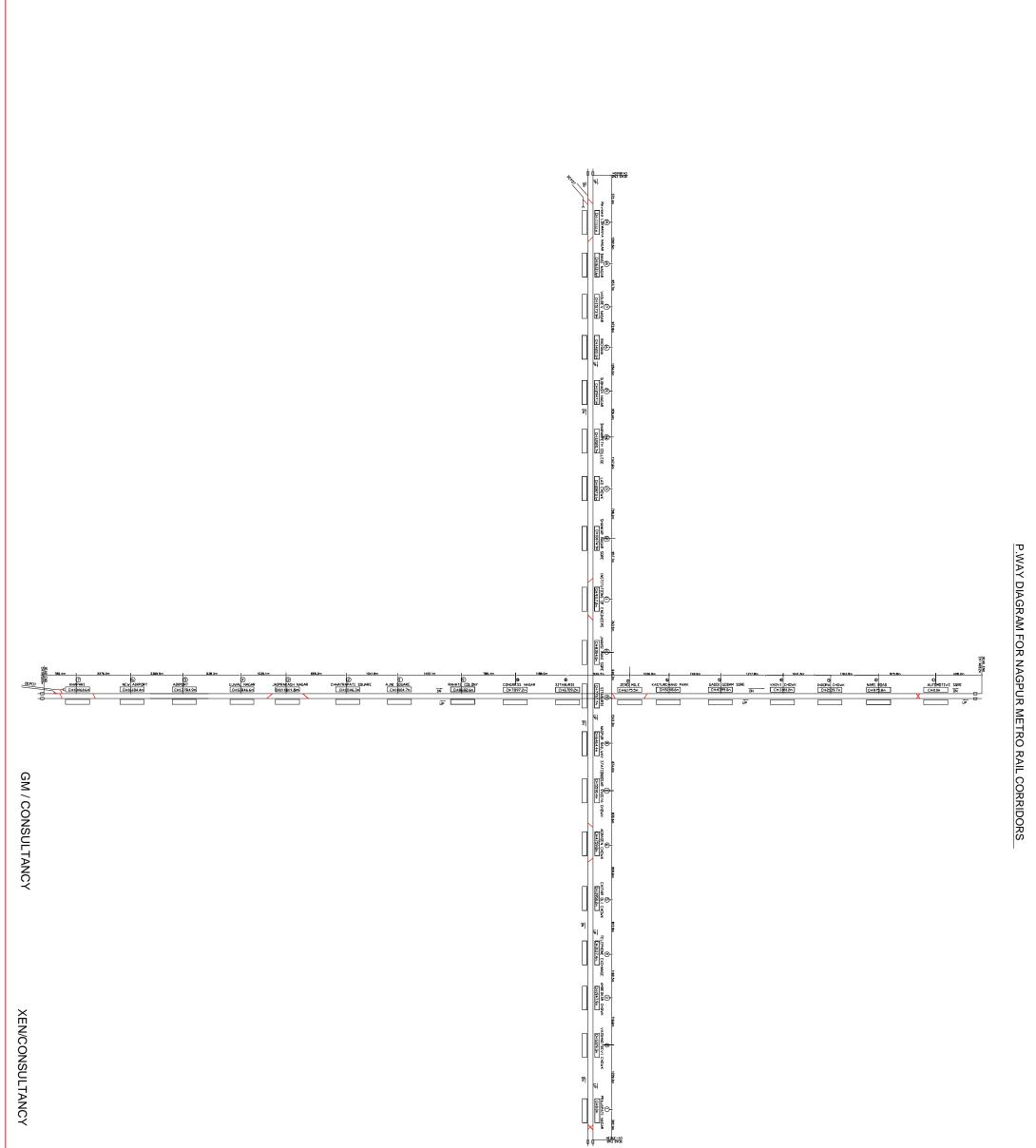
The following standards will be adopted with regard to the Signalling system.

Signalling System Standards					
Description	Standards				
 Interlocking 	Computer based Interlocking adopted for station having switches and crossing. All related equipment as far as possible will be centralised in the equipment room at the station. The depot shall be interlocked except for lines mainly used for workshop lines, inspection shed lines etc.				

TABLE 11.1 Signalling System Standards

De	escription	Standards
•	Block Working	Moving Block working concept may be followed.
•	Operation of Points	With Direct current 110V D.C. point machines or 380 volts 3 phase, 50 Hz. AC point machines.
•	Track Vacancy Detection System	Primary mode for track vacancy detection system on main line and test track in depot may be through radio and for depot and secondary detection it can be through Track circuit / Axle Counter.
-	Signals at Stations with point & crossings	Line Side signals to protect the points (switches). LED type signals for reliability and reduced maintenance cost.
•	UPS (uninterrupted power at stations as well as for OCC)	For Signalling and Telecommunications
•	Train protection system	Train Protection system shall be based on CBTC (Communication based Train Control) System. The system architecture shall provide for redundancy.
•	Train Describer System	Automatic Train Supervision system. Movement of all trains to be logged on to a central computer and displayed on workstations in the Operational Control Centre and at the SCR. Remote control of stations from the OCC. The system architecture shall provide for redundancy.
•	Cables	Outdoor cables will be steel armoured as far as possible.
•	Fail Safe Principles	SIL-4 safety levels as per CENELEC standard for signal application, Computer based Interlocking and for ATP System.
•	Immunity to External Interface.	All data transmission on telecom cables/OFC/Radio. All Signalling and telecom cables will be separated from power cables. CENELEC standards to be implemented for EMC.
•	Train Working under emergency	Running on site with line side signal with speed automatically restricted between 15-25 kmph.
•	Environmental Conditions	Air-conditioners for all equipment rooms.
•	Maintenance philosophy	Philosophy of continuous monitoring of system status and preventive & corrective maintenance of Signalling equipments shall be followed. Card / module / sub- system level replacement shall be done in the field and repairs under taken in the central laboratory/ manufacturer's premises.
-	Sidings	P.Way Plan of Line -1 and Line -2 of Nagpur Metro Rail Project from "Automative Sqre to Metro Depot Stn. (Line -1) and Prajapati Nagar to Lokmanya Nagar (Line -2) does show any siding. The same may be planed and provided on both the lines to take out the defective Trains during revenue hour.

11.3 SPACE REQUIREMENT FOR SIGNALLING INSTALLATIONS


Adequate space for proper installations of all Signalling equipment at each of the stations has to be provided keeping in view the case of maintenance and use of instrumentation set up for regular testing and line up of the equipment/system. The areas required at each of the stations for Signalling equipment shall be generally 60 sqm. for UPS Room (common for signalling and telecom) and for Signalling Equipment Room 50 sqm. at interlocked station with points & 20 sq.m at other stations. These areas shall also cater to local storage and space for maintenance personnel to work. At the OCC and the Depot, the areas required shall be as per the final configuration of the equipments and network configuration keeping space for further expansion.

11.4 Maintenance Philosophy for Signalling systems

The philosophy of continuous monitoring of system status and preventive & corrective maintenance of Signalling and telecommunication equipments shall be followed. Card / module / sub-system level replacement shall be done in the field. Maintenance personnel shall be suitably placed at intervals and they shall be trained in multidisciplinary skills. Each team shall be equipped with a fully equipped transport vehicle for effectively carrying out the maintenance from station to station.

The defective card/ module / sub-system taken out from the section shall be sent for diagnostic and repair to a centralized S&T repair lab suitably located in the section/depot. This lab will be equipped with appropriate diagnostic and test equipments to rectify the faults and undertake minor repairs. Cards / modules / equipments requiring major repairs as specified in suppliers documents shall be sent to manufacturer's workshop.

CAD OPER. / CONSULTANCY

NOT TO SCALE

CHAPTER 12

TELECOMMUNICATION & AUTOMATIC FARE COLLECTION

12.1	TELECOMMUNICATION
12.2	AUTOMATIC FARE COLLECTION
TABLES	
TABLE 12.1	TECHNOLOGIES FOR TELECOMMUNICATION SYSTEMS
TABLE 12.2	TECHNOLOGY FOR AFC SYSTEMS
TABLE 12.3	AMENITIES IN STATIONS LINE-1 N-S CORRIDOR (AUTOMOTIVE SQUARE TO DEPOT STATION)
TABLE 12.4	AMENITIES IN STATIONS LINE-2 E-W CORRIDOR (PRAJAPATI NAGAR TO LOKMANYA NAGAR)

FIGURES

FIG. 12.2 TICKET OFFICE MACHINE

Chapter - 12

Telecommunication & Automatic Fare Collection

12.1 TELECOMMUNICATION

12.1.1 Introduction

The Telecommunication system acts as the communication backbone for Signalling systems and other systems such as SCADA, AFC etc and provides Telecommunication services to meet operational and administrative requirements of metro network.

12.1.2 Overview

The Telecommunication facilities proposed are helpful in meeting the requirements for

- 1. Supplementing the Signalling system for efficient train operation.
- 2. Exchange of managerial information
- 3. Crisis management during emergencies
- 4. Passenger information system

The proposed Telecom system will cater to the following requirements:

- Train Traffic Control
- Assistance to Train Traffic Control
- Maintenance Control
- Emergency Control
- Station to station dedicated communication
- Telephone Exchange
- Integrated Passenger Announcement System and Passenger Information and Display System within the station and from Central Control to each station.
- Centralised Clock System
- Train Destination Indicator
- Instant on line Radio Communication between Central Control and Moving Cars and maintenance personnel.
- Data Channels for Signalling, SCADA, Automatic Fare Collection etc.

• E&M SCADA is not envisaged as part of Telecomm System as such, hence catered to separately in DPR.

12.1.3 Telecommunication System And Transmission Media

i) Fibre Optic System (FOTS) - Main Telecommunication Bearer

The main bearer of the bulk of the Telecommunication network is proposed with optical fibre cable system. Considering the channel requirement and keeping in view the future expansion requirements a minimum 48 Fibre optical fiber cable is proposed to be laid in ring configuration with path diversity.

SDH (minimum STM-16) based system shall be adopted with SDH nodes at every station, depot and OCC. The SDH equipment shall be equipped with Ethernet Card to provide channels to other interfacing Contractors of SCADA, PA/PIDS etc. Further small routers and switches shall be provided for LAN network at stations/depot. Alternatively a totally IP Based High Capacity, highly reliable and fault tolerant, Ethernet Network (MAN/LAN) can be provided in lieu of SDH backbone.

ii) Telephone Exchange

For an optimized cost effective solution Small exchanges of 30 port each shall be planned at each station and a 60 Port Exchange at the Terminal Stations shall be provided. The exchanges at Central Control and Depots shall be of larger sizes as per the actual number of users. The Exchanges will serve the subscribers at all the stations and Central Control. The exchanges will be interconnected at the channel level on optical backbone. The exchanges shall be software partitioned for EPABX and Direct Line Communication from which the phones shall be extended to the stations.Alternatively only for non-operational (other than Direct Line Communication), a separate IP Based Phone System can be implemented.

iii) Mobile Radio Communication

Mobile Radio communication system having minimum 8 logical channels is proposed for on-line emergency communication between Motorman (Front end and Rear end) of moving train and the Central Control. The system shall be based on Digital Trunk Radio Technology to TETRA International standard. This system now is widely adopted for mobile radio communication in metro / rapid transit services abroad. All the stations and the OCC will be provided with fixed radio sets. Mobile communication facility for maintenance parties and Security Personnel will be provided with handheld sets. These persons will be able to communicate with each other as well as with central control.

The frequency band for operation of the system will be that for TETRA in 400/800 MHz band, depending on frequency availability. The system shall provide mobile radio communication between the motorman of the moving cars from any place and the Central Control .The motorman can also contact any station in the network through the central control, besides intimating the approaching trains

about any emergency like accident, fire, line blocked etc., thus improving safety performance.

To provide adequate coverage, based on the RF site survey to be carried out during detailed Design stage, base stations for the system will be located at sites conveniently selected after detailed survey. Tentatively minimum 6 sites with towers with Base Stations shall be required along the East – West (EW) Corridor at Mahindra & Mahindra, Rachna (Ring RD JNC), Lad Chowk, Jhansi Rani SQRE, Dosar Vaisya Chowk (Mayo Hospital) and Telephone Exchange Stations. For the North – South (NS) Corridor, at least 5 Base Station with Towers shall be required at Mihan City, Mayuresh Station, Rahate Colony, Zero Mile and Kadvi Chowk Stations.

For the Underground Section of North-South corridor, one Base Station shall be required at New Airport feeding through Leaky Coaxial Cables, the adjacent tunnels.

In addition to the TETRA Radio Coverage for the internal use of the Metro, the city is also likely to have Mobile Coverage from Private Operators.

In the elevated sections it is expected that coverage shall be available from the adjoining sites of the Mobile Operators. However, in the underground stations / tunnels, coverage needs to be specially extended by the Mobile Operators. To enable the Mobile Operators to do so, the Metro Authority will have to have an agreement with a group of Mobile Operators according to which Metro shall provide an Air-conditioned room (approx. 20 sq. m) at the underground station to the Mobile Operator Group. The Mobile Operators shall install all their repeater equipment in this room and then extend the coverage inside the tunnel by laying their own LCX cable in each tunnel and through antennas strategically placed in the concourse area. Further, for City Emergency Services like Police, the mobile operators shall also design their LCX network to support the police wireless coverage in the tunnels /station area. The detailed Agreement covering both the Mobile / Emergency Service Radio Coverage shall have to be finalised by the Metro Authority with the respective parties, at the time of implementation.

iv) Passenger Announcement System

The system shall be capable of announcements from the local station as well as from OCC. Announcements from Station level will have over-riding priority in case of emergency announcements. The System shall be linked to Signalling System for automatic train actuated announcements.

v) Passenger Information Display System

These shall be located at convenient locations at all stations to provide bilingual visual indication of the status of the running trains and will typically indicate information such as destination, arrival/departure time, and also special messages in emergencies. The boards shall be provided at all platforms and concourses of all stations. The System shall be integrated with the PA System and available from same MMI.

vi) Centralised Clock System

This will ensure an accurate display of time through a synchronization system of slave clocks driven from a Master Clock at the operation control center. The Master Clock signal shall also be required for synchronization of FOTS, Exchanges, Radio, Signaling, etc. The System will ensure identical display of time at all locations. Clocks are to be provided at platforms, concourse, Station Master's Room, Depots and other service establishments etc.

vii) Closed Circuit Television (CCTV) System

The CCTV system shall provide video surveillance and recording function for the operations to monitor each station. The monitoring shall be possible both locally at each station and remotely from the OCC on a Video Wall.

The CCTV system backbone shall be based on IP technology and shall consist of a mix of Fixed Cameras and Pan/Tilt/Zoom (PTZ) Cameras. Cameras shall be located at areas where monitoring for security, safety and crowd control purpose is necessary.

For monitoring of inside of Train, a wireless CCTV System from Train to nearest station shall be provided. For this a wifi Broad Band network will be provided at each station, so as to automatically upload On-Board CCTV Video from the Train to the OCC at each station. The Broad Band Radio System shall be based on unlicensed wifi Band and shall use the Optical fibre backbone network to transfer video from the station to the OCC. The On- Board Train Cameras shall be provided as part of the Rolling Stock Contract and they shall interface with a On-Board wifi equipment provided by Telecom Contractor to transmit video to station equipment.

viii) Network Monitoring and Management

For efficient and cost effective maintenance of the entire communication network, it is proposed to provide a network management system (NMS), which will help in diagnosing faults immediately from a central location and attending the same with least possible delay, thus increasing the operational efficiency and reduction in manpower requirement for maintenance. The proposed NMS system will be covering Radio communication, Optical Fiber Transmission, Telephone Exchange and summary alarms of PA/PIDS, CCTV and Clock System.

Technology

The Technologies proposed to be adopted for Telecommunication systems are shown in below:

System	Standards					
Transmission Media	Optical Fibre system as the main bearer for bulk of the Telecommunication network					
Telephone Exchange	EPABX of minimum 30 ports is to be provided at all Stations, an Exchange of 60 Ports to be provided at Terminal Station					

 Table12.1 : Technologies for Telecommunication systems

System	Standards
• Train Radi System	Digital Train radio (TETRA) communication between motorman of moving cars, stations, maintenance personnel and central control.
Train Destination Indicator System	LED/LCD based boards with adequate visibility to be provided at convenient location at all stations to provide bilingual visual indication of the status of the running trains, and also special messages in emergencies.
Centralized clock system	Accurate display of time through a synchronisation system of slave clocks driven from a master clock at the OCC and sub – master clock in station. This shall also be used for synchronisation other systems.
 Passenger Announcemer System 	t Passenger Announcement System covering all platform and concourse areas with local as well as Central Announcement.
Redundancy (Major System)	Redundancy on Radio's in the Base Stations, Path Redundancy for Optical Fibre Cable by provisioning in ring configuration.
Environmenta Conditions	All equipment rooms to be air-conditioned.
	System to have, as far as possible, automatic switching facility to alternate routes/circuits in the event of failure.
 Maintenance Philosophy 	Philosophy of preventive checks of maintenance to be followed. System networked with NMS for diagnosing faults and co- ordination.
	Card/module level replacement shall be done in the field and repairs undertaken in the central laboratory/manufacture's premises.

x) Space Requirement for Telecom Installations

Adequate space for proper installations of all Telecommunication equipment at each of the stations has to be provided keeping in view the case of maintenance and use of instrumentation set up for regular testing and line up of the equipment/system. The areas required at each of the stations shall be generally 30 sq.m each for Telecom Room and 50 sq.m. for UPS Room (common for signal, Telecom and AFC). These areas shall also cater to local storage and space for maintenance personnel to work. At the OCC, the areas required shall be as per the final configuration of the equipment and network configuration keeping space for further expansion.

xi) Maintenance Philosophy for Telecom systems

The philosophy of continuous monitoring of system status and preventive & corrective maintenance of Telecommunication equipments shall be followed. Card / module / subsystem level replacement shall be done in the field. Maintenance personnel shall be suitably placed at intervals and they shall be trained in multidisciplinary skills. Each team shall be equipped with a fully equipped transport vehicle for effectively carrying out the maintenance from station to station. The defective card/ module / sub-system taken out from the section shall be sent for diagnostic and repair to a centralized S&T repair lab suitably located on the section. This lab will be equipped with appropriate diagnostic and test equipments to rectify the faults and undertake minor repairs. Cards / modules / equipment requiring major repairs as specified in suppliers documents shall be sent to manufacturer's workshop.

12.2 AUTOMATIC FARE COLLECTION

11.2.1 Introduction

Metro Rail Systems handle large number of passengers. Ticket issue and fare collection play a vital role in the efficient and proper operation of the system. To achieve this objective, ticketing system shall be simple, easy to use/operate and maintain, easy on accounting facilities, capable of issuing single/multiple journey tickets, amenable for quick fare changes and require overall lesser manpower. In view of above, computer based automatic fare collection system is proposed.

For Multiple Journey, the Store Value Smart Card shall be utilized and for the Single Journey, the media shall be as utilized as Contactless Smart Token.

AFC system proves to be cheaper than semi-automatic (manual system) in long run due to reduced manpower cost for ticketing staff, reduced maintenance in comparison to paper ticket machines, overall less cost of recyclable tickets (Smart Card/Token) in comparison to paper tickets and prevention of leakage of revenue. Relative advantages of automatic fare collection system over manual system are as follows:

A) Manual fare collection systems have the following inherent disadvantages:

- 1. Large number of staff is required for issue and checking of tickets.
- 2. Change of fare structure is time consuming as has to be done at each station.
- 3. Manipulation possible by jamming of mechanical parts.
- 4. Staff and passenger interaction leading to more chances of confrontation.
- 5. Almost 100% ticket checking at entry / exit impossible.

B) Automatic fare collection systems have the following advantages:

- 1. Less number of staff required.
- 2. Less possibility of leakage of revenue due to automatic ticket check by control gates.
- 3. Recycling of ticket fraudulently by staff avoided.
- 4. Efficient and easy to operate, faster evacuation both in normal and emergency.
- 5. System is amenable for quick fare changes.
- 6. Management information reports generation easy.
- 7. System has multi-operator capabilities. Same Smart Card can be used for other applications also, including in other lines of the Metro.
- 8. AFC systems are the worldwide accepted systems for LRT/Metro environment.

The proposed ticketing system shall be that to be of Contactless Smart Card type for multiple journey and Token for Single Journey. The equipment for the same shall be provided at each station Counter/Booking office and at convenient locations and will be connected to a local area network with a computer in the Station Master's room.

C) Choice of Control Gates

Retractable flap type Control Gates/Paddle Type Gates are proposed which offer high throughput, require less maintenance and are latest in modern metros internationally. Tripod turnstile type gates offer less throughput and require more maintenance and hence are not proposed.

D) Passenger Operated Machine

At all stations, two Passenger Operated Machines (Automatic Ticket Vending Machines) each are proposed. The POM's will provide convenience to passengers to avoid standing in queues at ticket booths and provide them international standard service.

E) Ticket Reader/Add Value Machines

These machines will be used to know the card/token balance and can also be used as Add value device in case payment for card top up is made through alternate Internet based channel like net banking, Payment gateway etc.

12.2.2 AFC equipment Requirement

AFC equipment tentative requirement is given in Table attached. The exact number and type shall depend on the final station layout and the traffic being catered to.

12.2.3 Technology

Standards	Description				
Fare media	 a) Contactless smart card – For multiple journeys. It is desirable to use a card to similar specifications as being used for other Transport modes (at City or National level), so as to have future interoperability integration possible. 				
	b) Single Journey: Contactless smart token captured at exit gates.				
	Computer controlled automatic gates at entry and exit. There will be following types of gates:				
_	Entry				
Gates	• Exit				
	 Reversible (if required as per final station layout) – can be set to entry or exit 				
	Reversible Handicapped Gate -gate for disabled people.				

The technology proposed for AFC systems are as under: Table12.2 : Technology proposed for AFC systems

Standards		Description					
•	Station computer, Central computer and AFC Net work	All the fare collection equipment shall be connected in a local area network with a station server controlling the activities of all the machines. These station servers will be linked to the central computer situated in the operational control centre through the optic fibre communication channels. The centralised control of the system shall provide real time data of earnings, passenger flow analysis, blacklisting of specified cards etc.					
•	Ticket office machine (TOM/EFO)	Manned Ticket office machine shall be installed in the stations for selling tickets to the passengers. Also POM's shall be provided for Automatic Ticket Vending.					
•	Ticket reader and portable ticket decoder.	Ticket reader shall be installed near EFO for passengers to check information stored in the ticket.					
•	UPS (uninterrupted power at stations as well as for OCC).	Common UPS of S&T system will be utilised.					

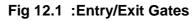


Fig 12.2 : Ticket Office Machine

PASSENGER TRAFFIC AND REQUIREMENT OF AMENITIES IN STATIONS (Projections for Year 2041)

Line-1 N-S corridor (Automotive Square to Depot Station)							ition)
Station	Peak Hour Boarding and Control of the second		TOM Required	Stairs Width (m) On Each Platform	Escalators Provided At Each Station		Provision of Lifts At Each Station
	ali	E-R-E		St	G-C	C-P	* G - P
AUTOMOTIVE SQRE	3517	2 – 2 – 2	2	4.80	2	2	2
NARI ROAD	1696	2-2-2	2	4.80	2	2	2
INDORA CHOWK	1366	2 - 2- 2	2	4.80	2	2	2
KADVI CHOWK	1469	2-2-2	2	4.80	2	2	2
GADDI GODAM SQRE	282	2-2-2	2	4.80	2	2	2
KASTURCHAND PARK	1947	2-2-2	2	4.80	2	2	2
ZERO MILE	1161	2-2-2	2	4.80	2	2	2
SITABURDI	5185	4-4-4	3	4.80	2	8	2
CONGRESS NAGAR	5869	4 - 4 - 4	4	4.80	2	2	2
RAHATE COLONY	1485	2-2-2	2	4.80	2	2	2
AJNI SQUARE	927	2-2-2	2	4.80	2	2	2
CHHATRAPATI SQUARE	521	2-2-2	2	4.80	2	2	2
JAIPRAKASH NAGAR	347	2 - 2- 2	2	4.80	2	2	2
UJWAL NAGAR	524	2 - 2- 2	2	4.80	2	2	2
AIRPORT	290	2 - 2- 2	2	6.00	2	2	2
NEW AIRPORT	1058	2 - 2- 2	2	4.80	2	2	2
KHAPARI	2905	2 - 2 - 2	2	4.80	2	2	2

Table 12.3 AMENITIES AT STATIONS Line-1 N-S corridor (Automotive Square to Depot Station)

Note: G- Ground/ street level,

C- Passage level,

P- Platform

* - Interchange station

Line-z E-w corridor (Prajapati Nagar			to Lokinanya Nagar)				
Station	Peak Hour Boarding and alighting in 2041	Ticketing Gates required On each	TOM Required.	Stairs Width (m) On Each latform	Escalators Provided At Each Station		Provision of Lifts At Each Station
	P Bo aligł	side E-R-E	R	Stair: On E	G-C	C-P	* G - P
1. Prajapati Nagar	498	2 - 2- 2	2	6.40	2	2	2
2. Vaishnodevi Chowk	458	2 - 2- 2	2	4.80	2	2	2
3. Ambedkar Chowk	520	2 - 2- 2	2	4.80	2	2	2
4. Telephone Exchange	2066	2 - 2- 2	2	4.80	2	2	2
5. Chittar oli Chowk	1611	2 - 2- 2	2	4.80	2	2	2
6. Agarsen Chowk	1028	2 - 2- 2	2	4.80	2	2	2
7. Dosar Vaisyan Chowk	1155	2 - 2- 2	2	4.80	2	2	2
8. Nagpur Railway Station	4460	2 - 2- 2	6	4.80	2	2	2
9. Sitaburdi	3839	4-4-4	7	4.80	2	2	2
10. Jhansi Rani Square	2969	4-4-4	3	8.00	2	2	2
11. Institute of Engineers	3492	2 - 2- 2	3	4.80	2	2	2
12. Shankar Nagar Square	2814	2 - 2- 2	2	4.80	2	2	2
13. Lad Chowk	565	2 - 2- 2	2	4.80	2	2	2
14 Dharampeth College	1634	2 - 2- 2	2	4.80	2	2	2
15 Subhash Nagar	315	2 - 2- 2	2	4.80	2	2	2
16 Rachna (Ring Road Jn.)	423	2 - 2- 2	2	4.80	2	2	2
17 Vasdev Nagar	819	2 - 2- 2	2	4.80	2	2	2
18 Bansi Nagar	534	2 - 2- 2	2	4.80	2	2	2
19 Lokmanya Nagar	1513	2 - 2- 2	2	4.80	2	2	2

Table 12.4AMENITIES AT STATIONSLine-2 E-W corridor (Prajapati Nagar to Lokmanya Nagar)

Assumptions:

1. Each station has only 2 access

2. Minimum AFC equipments at a station with "2 access- 1 for entry, 1 for exit": 2 entry gates, 2 exit gates, 2 EFO, 2 TOM, 4 TR,2 TVM

3. One Disabled gate at each station.

4. Throughput of gate 25 passengers per minute, TOM 10 transactions per minutes.

5. 50 % passenger are assumed on Smart Card and 50% on single journey token.

NOV 2013

CHAPTER 13

DISABLED FRIENDLY FEATURES

- 13.1 INTRODUCTION
- **13.2** CONTENT
- **13.3** RAIL TRANSPORT
- **13.4** INFORMATION SIGNS AND ANNOUNCEMENTS
- **13.5** METRO RAILWAY STATIONS
- **13.6** INFORMATION SYSTEMS
- **13.7** GENERAL AND ACCESSIBLE TOILETS
- **13.8** DRINKING WATER UNITS
- **13.9** VISUAL CONTRASTS
- **13.10** EMERGENCY EGRESS/EVACUATION
- **13.11** ALERTING SYSTEMS
- **13.12** WRITTEN EVACUATION PROCEDURE
- **13.13** EMERGENCY EVACUATION ROUTE
- **13.14** WAY GUIDANCE SYSTEM
- **13.15** FIRE RESISTANT DOORS
- **13.16** STREET DESIGN
- **13.17** TRAFFIC SIGNALS
- **13.18** SUBWAY AND FOOT OVER BRIDGE
- **13.19** ALIGHTING AND BOARDING AREAS
- **13.20**APPROACH
- **13.21** CAR PARK

Chapter - 13

DISABLED FRIENDLY FEATURES

13.1 INTRODUCTION

The objective of making this chapter is to create a user-friendly mass transport system in India which can ensure accessibility to persons with disabilities, people travelling with small children or are carrying luggage, as well as people with temporary mobility problems (e.g. a leg in plaster) and the elderly persons.

The design standards for universal access to Public Transport Infrastructure including related facilities and services, information, etc. would benefit people using public transport.

The access standards given here are extracted from Indian Roads Congress Code, IRC 103: 2012, Guidelines for Pedestrian Facilities; Model Building Bye-Laws, 2011 and National Building Code, 2005. Central Public Works Department's (CPWD) "Space Standards for Barrier Free Built Environment for Disabled and Elderly Persons", 1998 and 2013 edition (under revision by MoUD), and international best practices / standards

Further, it has also been attempted to provide guidelines/ standards for alighting and boarding area, approach to station, car parking area, drop-off and pick-up areas, taxi/auto rickshaw stand, bus stand/stop, footpath (sidewalk), kerb ramp, road intersection, median/pedestrian refuge, traffic signals, subway and foot over bridge etc. to achieve a seamless development around metro stations.

13.2 CONTENT

1. Rail Transport

2. Metro Rail Station

- Way finding
- Signage
- Automated Kiosks

NOV 2013 1/23

- Public Dealing Counters
- Audio-visual Displays
- Public Telephones
- Rest Areas/Seating
- Tactile Paving Guiding & Warning
- Doors
- Steps & Stairs
- Handrails
- Ramps
- Lifts/Elevators
- Platform/Stair Lift
- General and Accessible toilets
- Drinking Water Units
- Visual Contrasts
- Emergency Egress/Evacuation

3. Street Design

- Footpath (Sidewalk)
- Kerb Ramp
- Road Intersection
- Median/Pedestrian Refuge
- Traffic Signals
- Subway and Foot Over Bridge

4. Alighting and Boarding Area

- Approach
- Car Park
- Drop-off and Pick-up Areas
- Taxi/Auto Rickshaw Stand
- Bus Stand/Stop

13.3 RAIL TRANSPORT

1. General

- Whether over-ground or underground, rail travels is a highly effective mode of transport.
- Every train should contain fully accessible carriages.
- Staff should be trained in methods of assistance and be at hand on request.

NOV 2013 2/23

- Stations for all rail travel should be fully accessible with extra wide turnstiles where possible alongside wheelchair accessible doorways
- Staff should be on hand to assist persons with disabilities and elderly to enter or exit through convenient gates.
- All new railway stations should be designed to be fully accessible.
- ► For persons with hearing impairments, an electronic sign board (digital display) should be displayed on each platform at conspicuous location for all announcements made by the railways.
- ► For persons with visual impairments audio system announcing the station names and door location should be available.

2. Accessible Railway Cars

The railway cars should have the following features:

- Railway car doors should be at least 900 mm wide;
- The gap between the car doors and the platform should preferably be less than 12 mm;
- Identification signage should be provided on the doors of wheelchair accessible coach
- ▶ If the car door and the platform cannot be at the same level, then at least one car doors should have apparatus such as a hydraulic lift or pull-out ramp installed in the doorway for wheelchair users.

3. Wheel Chair Space

- Space for a wheel chair should be available at the side of the door:-
- The space should be indicated inside and outside the car by using the international symbol of access; and
- Wheel stoppers and ring-strap or other appropriate safety grip should be provided for wheelchair users.

4. Seats

An appropriate number of designated seats for passengers with disabilities and elderly people should be provided near the doors.

5. Aisles

Aisles should be at least 900 mm wide.

13.4 INFORMATION SIGNS AND ANNOUNCEMENTS

A map of train routes should be installed. This should be in Braille/raised numbers as well. In each car, there should be an announcement and provision of a visual display of

2013 3/23

the names of stations route. This display should be in raised numbers with sharp contrast from the background.

13.5 METRO RAILWAY STATIONS

1. LEVEL APPROACH

- Approach route should not have level differences. If the station is not on the same level as the walkway or pathway, it should a ramp.
- Walkway surfaces should be non-slip.
- Approach walkway should have tactile pavements for persons with visual impairments.

2. STATION ENTRANCES AND EXITS

- These should have a minimum width of 1800mm and is level or ramped.

3. RESERVATION AND INFORMATION COUNTERS

- Should have clear floor space of at least 900 mm x 1200 mm in front of the counters;
- There should be at least one low counter at a height of 750 mm to 800 mm from the floor with clear knee space of 750 mm high by 900 mm wide by 480 mm deep.
- At least one of the counters should have an induction loop unit to aid people with hearing impairments; and
- The counters should have pictographic maps indicating all the services offered at the counter and at least one of the counter staff should be sign language literate.

4. TOILET FACILITIES

- There should be at least one unisex accessible toilet
- Ticket Gates

At least one of the ticket gates should:

- Be minimum 900 mm wide to allow a wheelchair user through; and
- Have a continuous line of guiding paver for people with visual impairments.

5. PLATFORMS

The Platforms should:

- Have a row of warning paver installed 600mm before the track edge (photo 6);

NOV 2013 4/23

5/23

- Have non-slip and level flooring;
- Have seating areas for people with ambulatory disabilities;
- Be well illuminated lux level 35 to 40;
- There should be no gap or difference in level between the train entry door and the platform.
- All platforms should inter-connect by means of an accessible routes or lifts; and provide accessible level entrance to the train coach.

6. WAY FINDING

- Way finding references should be available at decision points.
- Colour can be used to identify routes and provide assistance in locating doors, walls and hazards. Proper colour contrast between different elements greatly improves visibility for all users and is critical for persons with low vision. For example, colour contrasting of door frames can assist in locating doors, and likewise floors should be contrasted with walls. In addition, furniture should contrast with walls and floors so as not to create an obstacle.
- Structural elements such as columns should be colour contrasted or brightly marked so as to be visible to those who may have a visual disability.
- Generally, patterns on flooring should be avoided or else should be minimal and small to avoid visual confusion.
- In addition to identifying hazards or warnings, tactile floor surfaces can also be used to inform that there is a change in area (e.g. leaving a corridor and entering a boarding area).
- Tactile systems should be consistent throughout the building. For example, terminals should not have carpeting in some boarding areas and tile in others as this may create confusion for those who rely on tactile surfaces to guide them to their destination.
- Good lighting assists those with a visual disability to see better and allows people who have a hearing impairment to lip read easier. However, care should be taken to properly direct lighting and to use matte finishes on floors, walls and signage, so as not to create glare which may create difficulties for all travelers.
- Blinds can be used to adjust lighting levels in areas where the natural lighting changes significantly throughout the day.

7. SIGNAGE

Signs must be clear, concise, and consistent. All travelers need clear information about the purpose and layout of terminals to maintain a sense of direction and independent use of all facilities. Using internationally and nationally established symbols and pictograms with clear lettering and Braille ensures universal accessibility cutting across regional/cultural and language barriers. A cohesive information and signage system can provide visual (e.g. signs, notice boards), audible (e.g. public address and security systems, induction loops, telephones, and infrared devices), and/ or tactile information (e.g. signs with embossed lettering or Braille).

8. SIGN DESIGN SPECIFICATIONS

- The sign should be in a prominent position.
- The face of the sign should be well-illuminated by natural or artificial light.
- Letters should be simple such as Arial, Helvetica medium, and san serif or similar and numbers should be Arabic.
- The colour of the text should be in a colour that contrasts with the sign board.
- The sign board should also contrast with the wall on which it is mounted.
- The surface of the sign should not be reflective.
- Some signs such as those adjacent to or on a toilet door may be embossed so that they can be read by touch.
- Illuminated signs should not use red text on a dark background.
- Signs should be supplemented by Braille where possible.

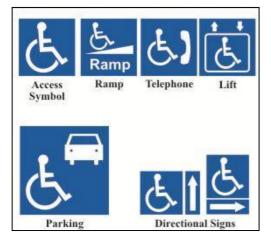


Fig. 13.1 - Way finding signage

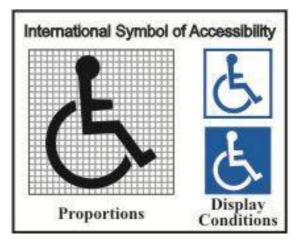


Fig. 13.2 - International Symbol of accessibility

9. AUTOMATED KIOSKS

- Automated kiosks should be accessible for wheelchair users.
- Should be clearly marked with international symbol of accessibility.
- Should have Braille buttons and audio announcement system for persons with vision impairments.
- Operations should be easy to understand and operate for persons with learning disabilities, intellectual disabilities, and elderly persons.

10. PUBLIC DEALING COUNTERS

- Ticketing, Information, Check-in, Help desk, Restaurants, Shops, etc. should have public dealing counters.

NOV 2013 6/23

- Information or help desks should be close to the terminal entrance, and highly visible upon entering the terminal. In addition, they should be clearly identified and accessible to both those who use wheelchairs and those who stand.
- It should provide information in accessible formats, viz. Braille leaflets for persons with vision impairments.
- Ideally, these desks should have a map of the facility that desk attendants can view with passengers, when providing directions.
- Staff manning the counters should know sign language.
- Information desk acoustics should be carefully planned and controlled as a high level of background noise is confusing and disorienting to persons with hearing impairment.
- Lighting should be positioned to illuminate the receptionist/person manning the counter and the desk top without creating glare.
- Lighting should not create shadows over the receptionist staff, obscuring facial detail and making lip reading difficult.
- There should be a hearing enhancement system such as a loop induction unit, the availability of which is clearly indicated with a symbol.
- One of the counters should not be more than 800mm from the floor, with a minimum clear knee space of 650mm high and 280mm- 300mm deep.

11. AUDIO-VISUAL DISPLAYS

- Terminal maps should be placed so that they are readily visible to persons who are standing and persons who use wheelchairs. They should also be accessible to persons with a visual disability (i.e. tactile maps). Other alternatives include electronic navigation systems or audio maps.
- Enable captioning at all times on all televisions and other audiovisual displays that are capable of displaying captions and that are located in any portion of the terminal.
- The captioning must be in high contrast for all information concerning travel safety, ticketing, check-in, delays or cancellations, schedule changes, boarding information, connections, checking baggage, individuals being paged by bus railway or airlines, vehicle changes that affect the travel of persons with disabilities, and emergencies (*e.g.*, fire, bomb threat).

12. REST AREAS/SEATING

- Seating area / benches should be provided along the circulation path at regular intervals so that passengers do not need to walk more than 50 to 60 metres before being able to sit and rest.
- Where seating is provided, designated seating for passengers with disabilities is to be provided at boarding gates and departure areas within viewing distance of communication boards and/or personnel and identified by the symbol of access.
- Public transit operators should provide seating in passenger service areas where there may be long waiting lines or times, including at ticket sales counters, check-

2013 7/23

in counters, secured screening and during inter-country travel in customs areas and baggage retrieval areas.

- Designated seating should be provided for at boarding gates and departure areas within viewing distance of communication boards, and within hearing range of audio announcements as well. Such seating areas should be identified by the symbol of accessibility and shelter should be provided where this seating is outdoors.
- In outdoor settings, seating should be provided along with the planned hawker spaces.
- At waiting lounges for persons with disabilities chairs should have armrests and backrest.

13. TACTILE PAVING- GUIDING & WARNING¹

(a) Tactile Guiding Paver (Line-Type)

It is recommended to install a row of tactile guidance paver along the entire length of the proposed accessible route for visual impaired persons. Care must be taken to ensure that there are no obstacles, such as wall, pillar, uneven surfaces, Soffit (underside /open area under the stairs, along the route traversed by the guidance paver. Also, there should be clear headroom of at least 2.1 meters height above the tactile guidance paver, free of protruding objects such as overhanging advertisement panel and signage, along the entire length of the walk.

(b) Tactile Warning Paver (Dot-Type)

Indicate an approaching potential hazard or a change in direction of the walkway, and serve as a warning of the approaching danger to persons with visual impairments, preparing them to tread cautiously and expect obstacles along the travel path, traffic intersections, doorways, stairs, etc. They are used to screen off obstacles, drop-offs or other hazards, to discourage movement in an incorrect direction, and to warn of a corner or junction. Two rows of tactile warning paver should be installed across the entire width of the designated accessible passenger pathway at appropriate places such as before intersections, terminal entrances, obstacles such as signage, and each time the walkway changes direction.

14. PLACES TO INSTALL WARNING PAVER

- In front of an area where traffic is present.
- In front of an entrance/exit to and from a staircase or multi-level crossing facility.
- Entrances/exits at public transport terminals or boarding areas.

NOV 2013 8/23

€

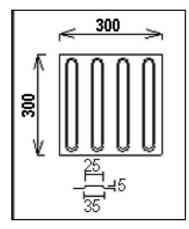


Fig. 13.3 - Guiding paver

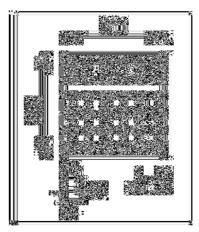


Fig. 13.4 - Warning paver

9/23

15. DOORS

Whatever the type of entrance door, it must be wide enough to accommodate passenger traffic comfortably.

- The recommended minimum clear opening width of an internal door is 900mm minimum.
- Where doors comprise two leaves (i.e. double doors), each leaf should be 900mm min. wide, so that persons carrying large items and people using wheelchairs do not have to open both leaves.
- Manual doors should incorporate kick plates 300-400mm high to withstand impact of wheelchair footrest (this is especially important where doors are glazed).
 - Also be fitted with vision panels at least between 900mm and 1500mm from floor level.
 - Be color contrasted with the surrounding wall and should not be heavier than 22N to open.
 - Lever handles and push type mechanisms are recommended . When a sliding door is fully open, handles should be usable from both sides.
- Where revolving doors or turnstiles are used, an alternative wheelchair-accessible entrance must also be provided.
- A distance of 400mm should be provided beyond the leading edge of door to enable a wheelchair user to maneuver and to reach the handle.
- To ensure maximum clarity for persons with visual impairments, the entrance should be easily distinguishable from its surroundings by the effective use of landscaping, signage, colour (preferably yellow/orange), tonal contrast and tactile surfacing.
- Door hardware should be positioned between 900-1000mm above floor (figure 28).
- Operable devices such as handles, pulls, latches and locks should:
 - Be operable by one hand
 - Not require fine finger control, tight grasping, pinching or twisting to operate
- Glazed doors and fixed glazed areas should be made visible by use of a clear, colour and tone contrasted warning or decorative feature that is effective from both inside and outside and under any lighting conditions, e.g. a logo, of minimum dimensions 150mm by 150mm (though not necessarily square), set at eye level.

16. STEPS & STAIRS

- Steps should be uniform with the tread not less than 300mm and the risers 150mm.

NOV 2013 10/23

- The risers should not be open.
- The steps should have an unobstructed width of 1200mm minimum.
- All steps should be fitted with a permanent colour and tone contrasting at the step edge, extending the full width of the step, reaching a minimum depth of 50mm on both tread and riser.
- Have continuous handrails on both sides including the wall (if any) at two levels
- Warning paver to be placed 300mm at the beginning and at the end of all stairs.
- Nosing to be avoided.
- The staircase should be adequately and uniformly illuminated during day and night (when in use). The level of illumination should preferably fall between 100-150 lux.
- The rise of a flight between landings must be no more than 1200mm.
- There should be no more than 12 risers in one flight run.
- The stair covering and nosing should be slip-resistant, non-reflective, firmly-fixed and easy to maintain.
- Soffit (underside /open area under the stairs) of the stairs should be enclosed or protected.

17. HANDRAILS

- Handrails should be circular in section with a diameter of 38-45mm and formed from materials which provide good grip such as timber, nylon or powder coating, matt finish metal finishes.
- The handrail should contrast in colour (preferably yellow/orange) with surrounding surfaces.
- At least 50mm clear of the surface to which they are attached and should be supported on brackets which do not obstruct continuous hand contact with the handrail.
- The handrail should be positioned at two levels- 760mm and 900mm above the pitch-line of a flight of stairs.
- Handrail at foot of the flight of stairs should extend 300mm beyond the stairs in the line of travel and returning to the wall or floor or rounded off, with a positive end that does not project into the route of travel.

18. RAMPS

- Ramps gradient should ideally be 1 in 20 and no greater than 1 in 12.
- Width of the ramp should not be less than 1200mm and preferred width is 1800mm.
- The steeper the gradient, the shorter the length of ramp between landings.
- On long ramps, a horizontal resting space should be provided every 6 meters.
- Surface materials should be slip-resistant, non-reflective, firmly-fixed and easily maintained
- The edge of the ramp should have an edge protection with a minimum height of 100mm.

NOV 2013 11/23

- Landings every 750mm of vertical rise.
- A tapping or lower rail should be positioned so that its bottom edge is no higher than 200mm above ground level.
- Handrails on the ramps should be on both sides at two levels: upper at 900mm and lower at 760mm; both end to be rounded and grouted; extend 300 mm beyond top and bottom of ramp.
- A row of tactile warning paver should be placed 300mm beginning and end of each run.
- Landings should be provided at regular intervals as indicated in the table (Table 1).

Level difference	Minimum gradient of Ramp	Ramp Width	Handrail on both sides	Comments
≥ 150 mm	1:12	1200 mm	\checkmark	
≤ 300 mm				
≥ 300 mm	1:12	1500 mm		Landings every 5 meters
≤ 750 mm				of ramp run.
≥ 750 mm	1:15	1800 mm	\checkmark	Landings every 9 meters
≤ 3000mm				of ramp run.
≥ 3000 mm	1:20	1800 mm		Landings every 9 meters
				of ramp run.

Table 13.1 - Specifications for Ramps

19. LIFTS/ELEVATORS

A carefully designed lift makes a huge contribution to the accessibility of a multistoried terminal building for persons with disabilities.

- Lift locations should be clearly signposted from the main pedestrian route and recognizable through design and location.
- The colour and tone of the lift doors should contrast with the surrounding wall finish to assist in their location. Lift doors with metallic finishes such as steel grey and silver should be avoided as they are difficult to identify by persons with low vision.
- The lift lobby shall be of an inside measurement of 1800mm X 2000mm or more. A clear landing area in front of the lift doors of minimum dimensions 1500mm x 1500mm should be provided.
- By making the landing area distinguishable by floor surface and contrast, it will aid location and recognition of core areas. This could comprise a change in floor finish from thin carpet to vinyl/PVC, or cement/mosaic floor to carpet.
- Changes in floor finish must be flushed. There should be no level difference between lift door and the floor surface at each level; the gap if unavoidable should not be more than 12mm.
- The floor level/location should be indicated on the wall adjacent to or just above the call buttons, and opposite the lift doors where possible.

NOV 2013 12/23

20. LIFT DIMENSIONS

- Provisions of at least one lift shall be made for people using wheelchairs with the following car dimensions:
 - Clear internal depth -1500 mm minimum
 - o Clear internal width 1500 mm minimum
 - Entrance door width 900 mm minimum

21. LIFT CONTROLS

- The lift call button should be wall-mounted adjacent to the lift and should contrast with wall finish, either by using a contrasting panel, or a contrasting border around the button panel.
- The call buttons should be located within the range 800-1000mm above floor finish.
- Buttons should not be touch sensitive, but should require a light positive pressure and should ideally be large enough to be operable by the palm of the hand if required.
- The control buttons inside the lift should be positioned on the side wall rather than front wall to allow access from the back and front of the lift car, by mobility aid users like wheelchair users.
- The control buttons should contrast with their surroundings and illuminate when pressed and should incorporate highly visible tactile embossed (NOT engraved) characters and in Braille.
- Time of closing of an automatic door should be more than 5 seconds and the closing speed should not exceed 25 meters per second. There should be a provision of censor enabled closing.
- In larger lifts, controls should be positioned on both side walls, at least 400mm from front wall and between 800-1000mm above floor level.

22. CAR DESIGN

- Internal walls should have a non-reflective, matt finish in a colour and tone contrasting with the floor, which should also have a matt, non-slip finish.
- Use of reflective materials such as metal (stainless steel for example) can be problematic in creating sufficient contrast with control buttons, emergency telephone cabinet, etc. for persons with low vision and the use of such materials should be avoided wherever possible.
- A mirror (750mm above floor level) on the rear wall can be useful to persons using wheelchairs and other mobility aids should they need to reverse safely out of the lift car or view the floor numbers.
- Internal lighting should provide a level of illumination of minimum 100 lux (approximately 50-75 lux at floor level), uniformly distributed, avoiding the use of spotlights or down lighters.

- A grab bar should be provided along both sides and the back wall, 900mm above floor level.
- Handrails should be of tubular or oval cross section, in order to be easily gripped and capable of providing support.
- Handrails should be positioned so that there is a clear space behind the handrail to allow it to be grasped i.e. knuckle space should be 50mm.

13.6 INFORMATION SYSTEMS

- Lifts should have both visual and audible floor level indicators
- Audible systems are also usually capable of incorporating additional messages, such as door closing, or, in the case of an emergency, reassurance (with manual over-ride allowing communication with lift occupants).
- Announcement system should be of 50 decibel.
- The display could be digital or segmented LED, or an appropriate alternative. A yellow or light green on black display is preferred to a red on black display as it is easier to read.

13.7 GENERAL AND ACCESSIBLE TOILETS

1. SIGNAGES

- All signage of general toilets should be in bold and contrasting colors.
- For persons with low vision and vision impairments: male pictogram in triangle and female pictogram in circle, marked on plates along with Braille & raised alphabets, to be mounted on wall next to door near the latch side, at a height between 1400mm-1600mm.
- Warning strip/ thin rubber door mat to be provided 300mm before and after the toilet entrance.
- Tactile paver to be provided for urinals, WC and washbasins for persons with vision impairments.

2. ACCESSIBLE TOILETS

- Should have the international symbol of accessibility displayed outside for wheelchair access.
- The toilet door should be an outward opening door or two way opening or a sliding type and should provide a clear opening width of at least 900mm.
- It should have a horizontal pull-bar, at least 600mm long, on the inside of the door, located so that it is 130mm from the hinged side of the door and at a height of 1000mm.

-

NOV 2013 14/23

15/23

3. WC COMPARTMENT DIMENSIONS

- The dimensions of a unisex toilet are critical in ensuring access. The compartment should be at least 2200mm and 2000mm. This will allow use by both manual and motorized wheelchair users.
- Layout of the fixtures in the toilet should be such that a clearing maneuvering space of 1500mm x 1500mm in front of the WC and washbasin.

4. WATER CLOSET (WC) FITTINGS

- Top of the WC seat should be 450-480mm above finished floor level, preferably be of wall hung or corbel type as it provides additional space at the toe level.
- An unobstructed space 900mm wide should be provided to one side of the WC for transfer, together with a clear space 1200mm deep in front of the WC.
- WC should be centred 500mm away from the side wall, with the front edge of the pan 750mm away from the back wall. Have a back support. The WC with a back support should not incorporate a lid, since this can hinder transfer.
- L-shape grab bar at the adjacent wall and on the transfer side (open side) swing up grab bar shall be provided.
- The cistern should have a lever flush mechanism, located on the transfer side and not on the wall side and not more than 1000mm from the floor.

5. GRAB BARS

- Grab bars should be manufactured from a material which contrasts with the wall finish (or use dark tiles behind light colored rails), be warm to touch and provide good grip.
- It is essential that all grab rails are adequately fixed, since considerable pressure will be placed on the rail during maneuvering. Grab bars should sustain weight of 200kgs minimum.
- A hinged type moveable grab bar should be installed adjacent to the WC on the transfer side. This rail can incorporate a toilet tissue holder. A distance of 320mm from the centre line of the WC between heights of 200-250mm from the top of the WC seat. It should extend 100-150mm beyond the front of the WC.
- A fixed wall-mounted L- shape grab bar (600mm long horizontal and 700mm long vertical) on the wall side should be provided. It should be placed at a height of 200-250mm above the WC seat level.

6. WASHBASINS

- Hand washbasins should be fitted on cantilevered brackets fixed to the wall.
- The basin should be fixed no higher than 750mm above the finished floor level.
- Be of dimensions 520mm and 410mm, mounted such that the top edge is between 800- 900mm from the floor; have a knee space of at least 760mm wide by 200mm deep by 650-680mm high.

- The position of the basin should not restrict access to the WC i.e. it should be located 900mm away from the WC.
- A lever operated mixer tap fitted on the side of the basin closest to the WC is useful as it allows hot and cold water to be used from a seated position on the WC.
- The hand drying facilities should be located close to the hand washbasin between 1000-1200mm.
- Lever type handles for taps are recommended.
- Mirror's bottom edge to be 1000mm from the floor and may be inclined at an angle.

7. FIXTURES AND FITTINGS

- Contrast between fittings and fixtures and wall or floor finishes will assist in their location. For example, using contrasting fittings, or dark tiles behind white hand washbasins and urinals, contrasting soap dispensers and toilet roll holders. Contrast between critical surfaces, e.g. floors, walls and ceilings helps to define the dimensions of the room.
- Towel rails, rings and handrails should be securely fixed to the walls and positioned at 800-1000mm from the floor.
- The mirror should be tilted at an angle of 300 for better visibility by wheelchair users.
- It should have lower edge at 1000mm above floor finish and top edge around 1800mm above floor finish.
- Hooks should be available at both lower-1200mm and standard heights- 1400mm, projecting not more than 40mm from the wall.
- Where possible, be equipped with a shelf of dimensions 400mm x 200mm fixed at a height of between 900mm and 1000mm from the floor.
- Light fittings should illuminate the user's face without being visible in the mirror. For this
 reason, most units which have an integral light are unsatisfactory.
- Large, easy to operate switches are recommended, contrasting with background to assist location, at a maximum height of 1000mm above floor finish.
- All toilet facilities should incorporate visual fire alarms.
- Alarms must be located so that assistance can be summoned both when on the toilet pan i.e. at 900mm height and lying on the floor i.e. at 300mm, from floor surface. Alarms should be located close to the side wall nearest the toilet pan, 750mm away from rear wall and at 900mm and 200mm above floor finish

8. SIGNAGE OF ACCESSIBLE TOILETS

All unisex accessible toilets to have access symbol in contrast colours. A distinct audio sound (beeper/clapper) may be installed above the entrance door for identification of the toilets.

Fig. 13.5 - Signage for accessible washroom

9. ACCESSIBLE URINAL

- At least one of the urinals should have grab bars to support ambulant persons with disabilities (for example, people using mobility aids like crutches).
- A stall-type urinal is recommended.
- Urinals shall be stall-type or wall-hung, with an elongated rim at a maximum of 430mm above the finish floor. This is usable by children, short stature persons and wheelchair users.
- Urinal shields (that do not extend beyond the front edge of the urinal rim) should be provided with 735mm clearance between them.
- Grab bars to be installed on each side, and in the front, of the urinal.
- The front bar is to provide chest support; the sidebars are for the user to hold on to while standing.

13.8 DRINKING WATER UNITS

- Drinking water fountains or water coolers shall have up front spouts and control.
- Drinking water fountains or water coolers shall be hand-operated or hand and footoperated.
- Conventional floor mounted water coolers may be convenient to individuals in wheelchairs if a small fountain is mounted on the side of the cooler 800mm above the floor.
- Fully recessed drinking water fountains are not recommended.
- Leg and knee space to be provided with basin to avoid spilling of water. This allows both front and parallel access to taps for persons using mobility aids like wheel chair, crutches etc.

13.9 VISUAL CONTRASTS

- Visual contrasts means adequate contrast created by difference of at least 30 LRV (Light Reflectance Value) of the two surfaces/ objects and it helps everyone especially persons with vision impairments.
- Visual contrast should be provided between:
 - o Critical Surfaces (walls, ceiling and floor),
 - Signage and background sign frame/ wall,
 - o Step edges and risers/ treads on steps,
 - Handrails and background walls,
 - Doors and surrounding walls,
 - o Switches/ sockets and background wall,
 - Toilet fixtures and critical surfaces in toilet.
- Barriers and hazards should be highlighted by incorporating colours and luminance contrast.

NOV 2013 17/23

13.10 EMERGENCY EGRESS/EVACUATION

- Placement (accessibility) and visibility of such devices is very important. The following is to be considered for the installation of such alarm devices; fire alarm boxes, emergency call buttons and lit panels should be installed between heights of 800mm and 1000mm from the furnished floor surface. These should be adequately contrasted from the background wall and should be labelled with raised letters and should also be in Braille.
- -
- A pre-recorded message, alerting an emergency to the control room or reception should be installed in the telephone and this should be accessible by a 'hotkey' on the phone keypad. This 'hotkey' should be distinct from the rest of the keypad.

13.11 ALERTING SYSTEMS

- In emergency situations, it is critical that people are quickly alerted to the situation at hand, for persons with disability the following needs to be considered.
- Consider having audible alarms with 'voice instructions' that can help guide them to the nearest emergency exit. As an alternative to the pre-recorded messages, these alarms may be connected to the central control room for on-the-spot broadcasts.
- _
- Non-auditory alarms (visual or sensory) to alert persons with hearing impairments should be installed at visible locations in all areas that the passengers may use (including toilet areas, etc).

Non-auditory alarms include:

- Flashing beacons
- Vibrating pillows and vibrating beds.
- Pagers or mobile phones that give out a vibrating alarm along with a flashing light (these may be issued to persons with vision or hearing impairments at the time of check-in or boarding the vehicle.)

13.12 WRITTEN EVACUATION PROCEDURE

A written evacuation procedure that details the egress plan for people with disability should be installed behind the entrance door in the accessible rest rooms. The evacuation procedure should be detailed in large print letters that contrast strongly against the background. Where possible, it should also incorporate raised letters and Braille. The evacuation route should be displayed on a high contrast tactile map for benefit of persons with vision impairments.

13.13 EMERGENCY EVACUATION ROUTE

- Designate routes that are at least 1200mm wide, to ensure that a person using a wheelchair and a non disabled person are able to pass each other along the route. The route should be free of any steps or sudden changes in level and should be kept free from obstacles such as furniture, coolers, AC units and flower pots.
- Use Exit signage along the route. Orientation and direction signs should be installed frequently along the evacuation route and these should preferably be internally illuminated. The exit door signage should also be internally illuminated.
- A 'way guidance lighting system' consisting of low mounted LED strips to outline the exit route (with frequent illuminated direction indicators along the route) should be installed along the entire length of the evacuation route. Way guidance systems allow persons with vision impairments to walk significantly faster than traditional overhead emergency lighting. Moreover, emergency exit lights in green color and directional signals mounted near the floor have been found to be useful for all people in cases where a lot of smoke is present.

13.14 WAY GUIDANCE SYSTEM

- Luminance on the floor should be 1lux minimum provided on along the centre line of the route and on stairs.
- Install clear illuminated sign above exit and also directional signage along the route.
- The directional exit signs with arrows indicating the way to the escape route should be provided at a height of 500mm from the floor level on the wall and should be internally illuminated by electric light connected to corridor circuits.

13.15 FIRE RESISTANT DOORS

Fire resistant doors and doors used along the emergency evacuation route are generally heavy and the force required to open these is much higher than 25 Newtons, making it difficult for people with disability to negotiate these doors independently. There are, however, magnetic and other types of door holders available that can be connected to fire alarms so that they will hold the doors open normally but will release the doors when the fire alarm is activated.

13.16 STREET DESIGN

(a) Footpath (Sidewalk)

Footpaths should be regarded as a transportation system which is connected and continuous, just like roadways and railways. They should not be sporadically placed where ever convenient, but instead should be provided consistently between all major attractions, trip generators, and other locations where people walk.

Footpath should:

- Be along the entire length of the road;
- Have height of a standard public step riser i.e. 150 mm maximum;
- Be at least 1800 mm wide;
- Have non-slip surface;
- Have tactile guiding paver for persons with visual impairments;
- Preferably have well defined edges of paths and routes by use of different colours and textures;
- Have no obstacles or projections along the pathway. If this is unavoidable, there should be clear headroom of at least 2200 mm from the floor level;
- The minimum 1.8m (width) x 2.2m (Height) Walking Zone should be clear of all obstructions – both horizontally and vertically.

Footpath should have:

- Have kerb ramps where ever a person is expected to walk into or off the pathway; and
- Have tactile warning paver installed next to all entry and exit points from the footpath.

(b) Kerb Ramp

- Kerb should be dropped, to be flush with walk way, at a gradient no greater than 1:10 on both sides of necessary and convenient crossing points. Width should not be less than 1200mm. If width (X) is less than 1200mm, then slope of the flared side shall not exceed 1:12.
- Floor tactile paving- Guiding & Warning paver shall be provided to guide persons with vision impairment so that a person with vision impairment does not accidentally walk onto the road.
- Finishes shall have non-slip surface with a texture traversable by a wheel chair.

(c) Road Intersections

- Pedestrian crossings should be equipped with traffic control signal.
- Traffic islands to reduce the length of the crossing are recommended for the safety of all road users.
- Warning pavers should be provided to indicate the position of pedestrian crossings for the benefit of people with visual impairments.
- Table tops (raised road level to the sidewalk height) are helpful in reducing the speed of traffic approaching the intersection

NOV 2013 20/23

21/23

(d) Median/Pedestrian Refuge

Raised islands in crossings should:

- Cut through and level with the street; or
- Have kerb ramps on both the sides and have a level area of not less than 1500 mm long in the middle; and
- A coloured tactile marking strip at least 600 mm wide should mark the beginning and end of a median/ pedestrian refuge to guide pedestrian with visual impairments to its location.

13.17 TRAFFIC SIGNALS

- Pedestrian traffic lights should be provided with clearly audible signals for the benefit of pedestrians with visual impairments;
- Acoustic devices should be installed on a pole at the point of origin of crossing and not at the point of destination;
- The installation of two adjacent acoustic devices such as beepers is not recommended in order to avoid disorientation;
- The time interval allowed for crossing should be programmed according to the slowest crossing persons; and
- Acoustical signals encourage safer crossing behaviour among children as well.

13.18 SUBWAY AND FOOT OVER BRIDGE

Subways and foot over bridges should be accessible for people with disabilities. This may be achieved by:

- Provision of signage at strategic location;
- Provision of slope ramps or lifts at both the ends to enable wheelchair accessibility ;
- Ensuring that the walkway is at least 1500 mm wide;
- Provision of tactile guiding and warning paver along the length of the walkway;
- Keeping the walkway; free from any obstructions and projections; and
- Providing for seats for people with ambulatory disabilities at regular intervals along the walkway and at landings.

13.19 ALIGHTING AND BOARDING AREAS

All areas and services provided in the Mass Rapid Transit System (Metro/subway), bus terminuses, etc. that are open to the public should be accessible.

13.20 APPROACH

- Passenger walkways, including crossings to the bus stops, taxi stands, terminal / station building, etc. should be accessible to persons with disabilities.
- Uneven surfaces should be repaired and anything that encroaches on corridors or paths of travel should be removed to avoid creating new barriers. Any obstructions

or areas requiring maintenance should be white cane detectable2.

- Access path from plot entry and surface parking to terminal entrance shall have even surface without any steps.
- Slope, if any, shall not have gradient greater than 5%. The walkway should not have a gradient exceeding 1:20. It also refers to cross slope.
- Texture change in walk ways adjacent to seating by means of tactile warning paver should be provided for persons with vision impairment.
- Avoid gratings in walks.

13.21 CAR PARK

(A) SIGNAGE

- International symbol of accessibility (wheelchair sign) should be displayed at approaches and entrances to car parks to indicate the provision of accessible parking lot for persons with disabilities within the vicinity.
- Directional signs shall be displayed at points where there is a change of direction to direct persons with disabilities to the accessible parking lot.
- Where the location of the accessible parking lot is not obvious or is distant from the approach viewpoints, the directional signs shall be placed along the route leading to the accessible parking lot.
- Accessible parking lot should be identifiable by the International Symbol of Accessibility. The signs should not be obscured by a vehicle parked in the designated lot.
- Vertical signs shall be provided, to make it easily visible, the sign should be at a minimum height of 2100 mm.

(B) SYMBOL

International Symbol of Accessibility should be clearly marked on the accessible parking lot for drivers/riders with disabilities only.

- A square with dimensions of at least 1000 mm but not exceeding 1500 mm in length;
- Be located at the centre of the lot; and
- The colour of the symbol should be white on a blue background.

(C) CAR PARK ENTRANCE

The car park entrance should have a height clearance of at least 2400 mm.

LOCATION

- Accessible parking lots that serve a building should be located nearest to an

NOV 2013 22/23

accessible entrance and / or lift lobby within 30 meters. In case the access is through lift, the parking shall be located within 30 meters.

 The accessible route of 1200 mm width is required for wheelchair users to pass behind vehicle that may be backing out.

(D) ACCESSIBLE CAR PARKING LOT

The accessible car parking lot should:

- Have minimum dimensions 5000 mm × 3600 mm;
- Have a firm, level surface without aeration slabs;
- Wherever possible, be sheltered;
- Where there are two accessible parking bays adjoining each other, then the 1200 mm side transfer bay may be shared by the two parking bays. The transfer zones, both on the side and the rear should have yellow and while cross-hatch road markings;
- Two accessible parking lots shall be provided for every 25 no of car spaces.

_

(E) DROP OFF AND PICK UP AREAS

- Designated drop-off and pick-up spaces, to be clearly marked with international symbol of accessibility.
- Kerbs wherever provided, should have kerb ramps.

CHAPTER 14

ENVIRONMENTAL IMPACT ASSESSMENT

- **14.0** INTRODUCTION
- **14.1** BASELINE ENVIRONMENTAL CONDITIONS
- **14.2** METEOROLOGY AND CLIMATE
- **14.3** AMBIENT AIR QUALITY
- **14.4** AMBIENT NOISE QUALITY
- **14.5** WATER QUALITY
- **14.6** SOIL QUALITY
- **14.7** POSITIVE IMPACTS DUE TO THE PROJECT
- **14.8** ANTICIPATED IMPACTS AND MITIGATION MEASURES
- **14.9** OTHER IMPACTS
- 14.10 SOCIAL IMPACTS
- **14.11** IMPACTS DURING OPERATION PHASE
- **14.12** IMPACT ON TERRESTRIAL ECOLOGY
- 14.13 ENVIRONMENTAL MANAGEMENT PLAN
- 14.14 MITIGATION MEASURES
- 14.15 ENVIRONMENTAL MONITORING PLAN

TABLES

TABLE 14.1	LAND USE CATEGORIES
TABLE 14.2	SUMMARY OF AIR QUALITY MONITORING RESULTS
TABLE 14.3	STATISTICAL INDICATORS FOR NOISE QUALITY
TABLE 14.4	WATER QUALITY MONITORING RESULTS
TABLE 14.5	SURFACE WATER SAMPLE ANALYSIS RESULTS
TABLE 14.6	SOIL SAMPLES ANALYSIS RESULTS
TABLE 14.7	SUMMARY OF TREES
TABLE 14.8	SOCIO-ECONOMIC PROFILE OF PAHS
TABLE 14.9	STRUCTURES AFFECTED
TABLE 14.10	TYPOLOGY OF STRUCTURES AFFECTED
TABLE 14.11	STRUCTURES AFFECTED CORRIDOR-WISE
TABLE 14.12	EXTENT OF IMPACTS ON STRUCTURES
TABLE 14.13	COMMON PROPERTY RESOURCES
TABLE 14.14	AREA LIKELY TO BE AFFECTED (SQM)
TABLE 14.15	CUMULATIVE IMPACT DUE TO INCREASE NOISE
TABLE 14.16	PROVISION OF NOISE BARRIERS IN DIFFERENT STRETCHES
TABLE 14.17	ENVIRONMENTAL MANAGEMENT PLAN
TABLE 14.18	ENVIRONMENTAL MONITORING PROGRAMME

CHAPTER 14

ENVIRONMENTAL IMPACT ASSESSMENT

14.0 INTRODUCTION

The Ministry of Environment and Forests (MoEF), Government of India issued notification on 14th September 2006 superseding the earlier notification No.: SO 60(E) dated 27th January 1994 for getting Environmental Clearance. All new projects/expansion and modernization of existing projects or related activities listed in the schedule 1 of the notifications are required to obtain prior environmental clearance from MoEF. The proposed Nagpur Metro rail project does not fall in the schedule requiring the prior environmental clearance. Still, DMRC being an environmental conscious organization has undertaken EIA study to mitigate/reduce the environmental impacts arising from construction and operation of the project.

DMRC appointed M/s Consulting Engineering Services (India) Private Limited for carrying out the EIA study for the proposed Nagpur Metro. The objective of the EIA study is as follows:

- Ascertain positive and negative environmental and social impacts of the project.
- Mitigate negative environmental and social impacts.
- Enhance environmental quality in and around the project area by adopting mitigation and conservation measures.

14.1 BASELINE ENVIRONMENTAL CONDITIONS

The development / compilation of environmental baseline data are essential to assess the impact on environment due to the project. The environment includes water, land, air, ecology, noise, vibration etc. The information presented in this section stems from various sources such as reports, field surveys and monitoring.

Climatologically data was collected from regional meteorological department at Nagpur. This data has been further utilized to assess the incremental impact if any due to the project. Socio-Economic assessment has also been done. Study area

1/39

consists of the following two metro alignments for the proposed metro rail project in Nagpur.

- Automotive Square to KHAPRI (North South Corridor) 19.658 Km including one depot
- Prajapati Nagar to Lokmanya Nagar (East West Corridor) 18.557 Km including one depot.

14.1.1 Physiography

Nagpur district lies on the Deccan Plateau of Indian peninsula and has a mean altitude of 310.5 mean above sea level. It is situated at latitude between 20°35'N and 21°44'N and longitude between 78°15'E and 79°40'E. The district is situated on the eastern part of the State abutting the state of Madhya Pradesh in north and is bounded by Wardha and Amravati districts in the west, Bhandara district in the east and Chandrapur district in the south. The district has a geographical area of 9892 sq. km. Nag River a tributary of Kanhan river flows through the project alignment. The district forms part Godavari Terrain of the project area is plain.

14.1.2 Geology and Soil

The city of Nagpur lies on the basaltic flow known geologically as Deccan Traps. The parent basalt is very dark grey in colour, compact, dense and very hard in nature. It is very difficult to break this rock and it breaks up with sharpconchoidal fractures confirming to be of igneous origin. Nagpur city lies in the neighbourhood of the classical geological areas of India. More than half of the whole district of Nagpur is covered by basaltic and doleritic lava flows known as Deccan Traps. The main soil types present in the region are kali soils, morand soils, khardi soils, bardi soils, kachchar soils and wardi soils.

14.1.3 Hydrology

Nagpur city is located on a basaltic plateau and the topography in and around the city is plain it gently rolling. The north-eastern and eastern parts of Nagpur district are drained by Wainganga river and its tributaries of which Kanhan forms the major .The central and western portion of the district is drained by Wena river which is main tributary of Wardha river.

There are several natural water bodies within the city limits including 12 lakes, two rivers and five nallahs. The lakes (Gorewada, Futala, Ambazari, Sonegaon, Sakkardara, Gandhisagar, LendiTalao, NaikTalao, DobTalao, Pandrabodi, Sanjay Nagar Khadan and Pardi) cover an area of about 3.13 sq. km. The Nag and Pili

Rivers cut across the city and are 15.73 km. and 12.11km. in length, respectively. Besides these, Chamar Nallah, Shakti Nagar Nallah, Hudkeshwar Nallah, Swawalabmi Nagar Nallah and Sahakar Nagar Nallah also flow through the city.

14.1.4 Land Use Pattern

The land use/land cover pattern of a region is an outcome of natural and socio – economic factors and their utilization by man in time and space. Hence, information on land use / land cover is essential for the selection, planning and implementation of land use which can be further used to meet the increasing demands for basic human needs and welfare. Land use pattern along both the alignment is generally residential and commercial, with some part of the alignment having plantation, Institutions, water bodies etc.

The different categories of land use of the study region are given in the Table 14.1 below:

S. No.	Land Use Category	Area (sq.km)	Area Percentage (%)
1	Agricultural Land	11.34	14.52
2	Built-up Area	38.85	49.75
3	Open Area	7.31	9.36
4	Plantation	8.25	10.56
5	Institute	0.51	0.65
6	Industry	6.79	8.70
7	Lake	1.57	2.01
8	Water body	0.42	0.54
9	Canal	0.23	0.29
10	Ground	0.19	0.24
11	Wasteland	2.63	3.37
Total		78.09	100.00

Table 14.1: Land Use Categories

14.2 Meteorology and Climate

The climate of Nagpur can be broadly divided into three important seasons of summer, winter and monsoon. Almost throughout the summer (March-June), the maximum temperature remains beyond 40 degree Celsius. Sometimes it may be as high as 48 degree Celsius. Monsoons (July-September) take its charge in the month

of June. It showers maximum in the months of July and August. The minimum temperature recorded around 12 degree Celsius in winters (October-January) and sometimes even dips down below that level in the month of February. Nagpur city experiences a low pressure in the end of May month resulting in the wind blowing at a speed of 6 m/s or more and for the rest part of the year; the speed remains 2 to 3 m/s.

14.2.1 Temperature

The temperature generally rises from the beginning of March till June, which is the hottest month of the year with mean minimum and maximum temperatures of 20.3°C and 36.7°C respectively. With the onset of monsoons by the end of June, temperature begins to fall. The drop in day temperature is much more than the drop in night temperature.

The night temperature falls rapidly after the withdrawal of monsoons by mid-September. The month of December is coolest month with the mean maximum and minimum temperatures being 28.3°C and 12.1°C respectively.

Sky is generally clear with light surface winds blow from North or Northeasterly direction. The normal minimum temperature is 12.0°C to 14.0°C with slight rise in the mean daily minimum temperature. The mean maximum temperature is around 29.0°C.

14.2.2 Humidity

Except during monsoon months is generally low throughout the year. During summer season, humidity is lowest (20.7%). During monsoon months, it goes as high as 80-90%. The highest level of humidity (88%) is observed in the month of August.

14.2.3 Rainfall

At Nagpur, the annual rainfall is 1250.7 mm. About 60 to 70 % of the annual rainfall is reviewed in the monsoon months. The rain in Nagpur is heavily dominated by the south-westerly monsoon winds. Precipitation in form of rain is received during monsoon months. The number of rainy days in a year is about 56.9 at Nagpur.

14.2.4 Seismicity

The project area falls in **Zone-II** of Seismic Zoning Map of India. This is a least active zone from seismic point of view. Nagpur has close to zero chances of getting a major earthquake which may cause huge devastation. Recent history also supports the fact

that Nagpur region is relatively very safe as far as earthquakes are concerned. But still, as per the Seismic Zoning Map of India (IS 1893, Part-I, 2002) necessary seismic factors suggested by Indian Meteorology Department (IMD) shall be incorporated suitably while designing the structures to safeguard against earthquake risks.

14.3 Ambient Air Quality

As a part of this study ambient air quality monitoring (AAQM) has been carried out by setting up ambient air quality monitoring stations at four locations. The baseline data pertaining to the existing air quality will help mitigate impact on air quality during construction stage and operation stage of the project. The prominent source of air pollution in urban area is vehicular traffic.

Monitoring was done as per the guidelines for Ambient Air Quality Monitoring, National Ambient Air Quality Series NAAQMS/25/2003-04. The following parameters were measured:

- Respirable Suspended Particulate Matter (RSPM/PM₁₀)
- Fine Particulate Matter (FPM/PM_{2.5})
- Sulphur Dioxide (SO₂)
- Nitrogen Dioxide (NO₂)
- Carbon Monoxide (CO, 1 hourly)
- Hydrocarbons (HC 1 hourly)

Air quality monitoring results are summarized in the following Table 14.2.

Parameter.	Proposed Kadbi Chawk Station (Residential/Co mmercial area)			Near Proposed Subhash Nagar Station (Residential/Co mmercial area)		
		ΡΜ _{2.5} μg/m ³				
No. of Samples	8	8	8	8		
Range	28-52	32-51	29-64	27-40		
Mean	42.8	36.3	41.8	33		
98 percentile	49.6	40.7	61.3	39.5		
	PM ₁₀ μg/m ³					
No. of Samples	8	8	8	8		
Range	29-86	23-37	70-83	29-33		
Mean	55.3	30.9	77.0	30.7		
98 percentile	85.6	36.4	82.1	33.1		

Table 14.2: Summary of Air Quality Monitoring Results

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

5/39

NOV 2013

NO ₂ µg/m ³					
No. of Samples	8	8	8	8	
Range	37-49	29-49	29-44	29-49	
Mean	42.4	36.6	35.9	41.6	
98 percentile	47.6	48.6	42.9	48.5	
		SO ₂ µg/m ³			
No. of Samples	8	8	8	8	
Range	9-23	11-26	9-26	10-24	
Mean	16.3	17 .8	17.4	17.9	
98 percentile	22.0	24.8	25	23.5	
		CO mg/m ³			
No. of Samples	8	8	8	8	
Range	1.1-1.17	1.12-1.31	1.13-1.34	1.15-1.23	
Mean	1.13	1.24	1.21	1.20	
98 percentile	1.17	1.3	1.31	1.23	
Hydrocarbons (µg/m3)					
No. of Samples	8	8	8	8	
Concentrati on	<1.0	<1.0	<1.0	<1.0	

The maximum value of $PM_{2.5}$ found at Kadbi Chawk station (42.8 µg/m³⁾ followed by Ambedkar Chawk (41.8 µg/m³⁾, Mayuresh Station (36.3 µg/m³⁾ and Subhash Nagar Station (33 µg/m³⁾.

The mean Nitrogen Dioxide concentrations were measured as 42.4 μ g/m^{3, 36.6} μ g/m^{3, 35.9} μ g/m^{3 and} 41.6 μ g/m³ at Kadbi Chawk, Mayuresh station, Ambedkar Chawk and Subhash Nagar station. These concentrations are well within the standards i.e. 80 μ g/m³ as prescribed by National Ambient Air Quality Standards. The low level of the Nitrogen Dioxide concentration may be attributed to better traffic management.

The average concentration of Sulphur Dioxide generated at various monitoring stations were recorded 16-18 μ g/m^{3 and}. The values are also well within the specified limit i.e.80 μ g/m³ at all the monitoring stations

The mean Carbon Monoxide values at all four monitoring sites were recorded as 1.13 mg/m³, 1.24 mg/m³, 1.21 mg/m³ and 1.20 mg/m³ at Kadbi Chawk station, Mayuresh Station, Ambedkar Chawk and Subhash nagar station which is well within the National Ambient Air Quality Standards of 2mg/m³.

As per the quantitative analysis of Hydrocarbons in air samples it may be concluded that hydrocarbons are present in minimum concentration (<1.0 μ g/m³) in the air environment of the study area. The concentration of Hydrocarbons measured at all four stations throughout the winter season was very well below the limit of 5 μ g/m³.

14.4 Ambient Noise Quality

Noise levels are measured at different places (16 locations) in Nagpur along the corridor at building lines away from source as per standard practice. Noise monitoring locations are presented in following Table 14.3 below:

Statistical indicators worked out for establishing the baseline conditions along the project corridor is presented in Table 14.3 below:

SI. No.	Station Id	L_{eqDay}		Leq	L ₁₀	L ₅₀	L ₉₈
1	Automotive Square	70.00	61.40	67.55	70.05	65.05	63.65
2	Sri Guru Govind Singh Educational Institute	73.00	60.00	70.20	74.70	68.35	65.50
3	Z.P.School Patawardhan Technical High School & College	64.00	53.20	61.34	64.09	59.44	55.64
4	Bank of Maharashtra near proposed Sitaburdi station (Munje Chawk)	70.00	58.00	67.26	72.06	64.36	63.06
5	NEERI Campus	71.50	63.80	69.17	74.57	65.67	65.45
6	Mayuresh Apartmnt (at proposed mayuresh station)	62.80	48.60	59.95	63.25	56.95	54.75
7	Existing Terminal Building	71.50	43.70	68.50	70.0	67.0	63.2
8	Open land of MIHAN SEZ	55.00	34.28	52.03	55.38	49.03	46.53
9	Saboo Hospital	70.80	62.70	68.42	72.31	65.22	63.47
10	Ashish Tower	68.50	55.00	65.68	70.08	63.88	60.48
11	Mayo Hospital	70.00	62.00	67.63	71.03	66.68	64.43
12	Ram Mandir	73.50	67.40	71.44	75.09	69.14	66.34
13	Govardhan Das Rawal High School	67.00	52.80	64.15	67.00	63.15	58.75
14	Salpeker's Brother's Petrol Pump	74.00	65.70	71.59	75.44	69.84	66.09
15	Dharampeth Polytechnic & Scienc College	69.00	48.90	66.03	71.23	63.03	61.83
16	St. Xevieviers High School	68.00	52.30	65.11	69.91	62.36	62.11

Table 14.3: Statistical Indicators for Noise Quality

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

7/39

Highest value of Leq _{day} has been obtained at NQ 13 (74 dB A) and minimum value has been obtained at NQ 7 (67 dB A) along the East – West corridor. Whereas, maximum day time L_{eq} has been obtained at NQ2 (73 dB A) and minimum value is obtained at NQ5 (62.5 dB A) along the North South corridor.

14.5 Water Quality

It is reported that five rivers are intercepting the project road. The other hydrological features are irrigation canal which intercepted the project road at five locations. The ponds are existing along either side of the project road provide requirements to village communities. The flow of river in the project site is seasonal and remains dry throughout the year. The underground water is the only important source for catering to needs of water demand for village's communities falling along the project road.

Water quality monitoring was carried out at four location covering two surface water sources and two groundwater sources. The results of the groundwater analysis obtained are presented below in Table 14.4:

		Station code		
Parameter and unit	Gandhi Bagh Garden (GW1)	Automotive Square (GW2)	Mayuresh Station (GW3)	Limits as per IS:10500
Colour (Hazen units)	<5	<5	<5	5
Taste	Agreeable	Non- Agreeable	Non- Agreeable	Agreeable
Temperature (°C)	28	28.6	27.6	-
Ph	8.6	8	8.9	5-8.5
Conductivity (µS/cm)	950	835.2	605.2	-
TDS (mg/L)	31.5	30.5	14.9	500
TSS (mg/L)	2	3	1	-
Total hardness(mg/l)	329.4	313.2	199.8	300
Total alkalinity(mg/l)	152.63	50.88	101.75	200
Chloride (mg/l)	67.10	72.07	77.04	250
Sulphate (mg/l)	7.28	4.28	5.06	200
Nitrate (mg/l)	0.011	BDL	BDL	45
Fluoride (mg/l)	0.76	BDL	BDL	1
Calcium (mg/l)	70.2	270	81	75
Magnesium (mg/l)	62.99	10.50	28.87	30
Sodium (mg/l)	697	477	432	-
Potassium (mg/l)	168	155	266	-

Table 14.4: Water quality monitoring results

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

8/39

Parameter and unit	Gandhi Bagh Garden (GW1)	Automotive Square (GW2)	Mayuresh Station (GW3)	Limits as per IS:10500
Phosphate (mg/l)	0.04	0.32	2.47	-
Silica (mg/l)	0.19	0.70	0.11	-
Arsenic (mg/l)	<0.01	<0.01	<0.01	0.01
Lead (mg/l)	<0.05	<0.05	<0.05	0.05

14.5.1 Physical Parameters

The quality of the ground water is showing alkaline trend as the pH value ranges from 8-8.9 which is not within the desirable limit for Automotive Square and Mayuresh Station persisting non-agreeable taste used for drinking purpose. The water contains no color, turbidity free and is odourless serving the most important source for drinking. Electrical Conductivity is a useful tool to evaluate the purity of water. The groundwater is fresh and potable with electrical conductivity ranging between 605.2μ S/cm to 950μ S/cm at 25° C

Total dissolved solids (TDS) is a measure of the combined content of all inorganic and organic substances contained in a liquid in molecular, ionized or micro granular suspended form. The limit of 500mg/l for potable water is based primarily on the taste threshold. TDS ranges between 14.9mg/L to 31.5mg/L which is well in the permissible limit.

TSS varies from 1mg/L to 3 mg/L while Total Hardness in the ground water samples vary from 199.8mg/L to 329.4mg/L as CaCO₃.All the ground water samples were found to be moderately hard. Maximum Total hardness is reported in Gandhi Bagh Garden whereas minimum total hardness is reported in Mayuresh Station. Though hard water has no harmful effects on health but it restricts its use for other purposes

14.5.2 Chemical Parameters

Chloride content in the water samples was low in the winter season. The concentration of chloride in the groundwater is found in the range of 67.1mg/L to 77.04 mg/L which is within the limit at all groundwater stations

The sulphate content varies between 4.28mg/l to 7.28mg/l and the fluoride content is 0.76mg/l at Gandhi Bagh Garden which is within the desirable limit of 1mg/l. Maximum Sulphate concentration is observed in Gandhi Bagh Garden but very well below the desirable limit.

Total Alkalinity in terms of $CaCO_3$ varies from 50.88mg/l to 152.63mg/l which is within the desirable limit of 200mg/l as prescribed by Indian Standards of Drinking Water.

Nitrate is well within the limits of IS: 10500 at all the stations. Its concentration at Gandhi Bagh Garden is 0.011mg/l while it is below detection limit at other sites which is within the permissible limit of 45mg/l

Fluoride content at Gandhi Bagh garden is 0.76mg/l which is well below the desirable limit 1.0mg/l

Calcium is a major cation found in ground water. Its concentration varies between 70.2mg/l to 270 mg/l. The concentration of calcium at Automotive Square and Mayuresh Station exceeds the limit of 75mg/l.

Magnesium concentration in the groundwater is high ranging between 10.5mg/l to 62.99mg/l Mayuresh Station exceeds the permissible limit of 30mg/l

14.5.3 Heavy metals

Arsenic and lead concentration at all the GW stations is below the desirable limit of 0.01mg/l and 0.05mg/l respectively.

14.5.4 Microbiological parameters

Total coliform and fecal coliform are absent in the groundwater samples.

The results of the surface water sample analysis obtained are presented below in Table 14.5:

Parameter and unit	Station code	Limits as per IS:2296	
	Ambajhari lake (SW1)	Class D	
Colour (Hazen units)	>5	-	
Taste	Non-Agreeable	-	
Temperature (°C)	28	-	
Ph	8.2	8.5	
Conductivity (µS/cm)	1966.1	1000	
TDS (mg/L)	88.8	-	
TSS (mg/L)	20	-	
Dissolved Oxygen (mg/l)	5.6	4	
Total hardness(mg/L)	286.2	-	
Total alkalinity(mg/L)	254.38	-	
Chloride (mg/L)	206.26	-	
Sulphate (mg/L)	33.84	-	
Nitrate (mg/L)	0.023	-	
Fluoride (mg/L)	0.94	-	
Calcium (mg/L)	17.28	-	
Magnesium (mg/L)	59.049	-	

Table 14.5: Surface water sample analysis results

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013 10/39

Parameter and unit	Station code	Limits as per IS:2296	
	Ambajhari lake (SW1)	Class D	
Sodium (mg/L)	1456	-	
Potassium (mg/L)	187	-	
Phosphate (mg/L)	0.02	-	
Silica (mg/L)	0.86	-	
Nitrite mg/l	BDL	-	
COD	12	-	
BOD mg/ml	5.0	-	
Oil & Grease mg/l	6	0.1	
Arsenic (mg/L)	<0.01	-	
Lead (mg/L)	<0.05	-	
Total Coliform (MPN/100ml)	110	-	

14.5.5 Physical Parameters

The pH value of SW1 is 8.2. The alkaline pH in lake water might be due to presence of alkalinity minerals in water. Higher values of pH also reduce germicidal potential of chloride. The electrical conductivity of the surface water is 1966.1 μ S/cm. Electrical conductivity at the site was found to exceed the limit of 1000 μ S/cm. High value of conductivity recorded at SW1 (Ambajhari Lake) indicates a high concentration of soluble salts in water. The water contains color, therefore do not serves the drinking purpose of the local population dwelling in the area.

The value of TDS 88.8 mg/L. TSS is found in natural surface water. TSS value of water sample is 20 mg/l.

The value of DO is 5.6 mg/l indicating low levels of organic matter in the water. The principal natural physical factors affecting the concentration of oxygen in the marine environment are temperature and salinity. DO concentrations decrease with increasing temperature and salinity.

14.5.6 Chemical Parameters

Total Hardness in the surface water sample is 286.2mg/L as CaCO₃. Sulphate is present in the surface water within the permissible limit. Its concentration is 33.84mg/l.

Total Alkalinity in terms of $CaCO_3$ of the water sample is 254.38mg/l indicating high concentration of carbon based molecules suspended in that water Chloride is an important anion present in the water. Its concentration is 206.6mg/L showing high chloride content. Elevated levels may also harm aquatic life.

Nitrates are used as indicators of nutrient levels and as a guide for the algal blooms and hence eutrophication. Its concentration beyond permissible limit leads to methaemoglobinemia, which is blue baby disease. Its concentration in the surface water samples is 0.023 mg/l. Fluoride content is 0.94mg/l

Calcium is a major cation found in water. Its concentration in the water sample is 17.28 mg/l.

Chemical Oxygen Demand value is 12 mg/l in the water sample which indicates that the Lake water is unpolluted. Low Total Phosphate content of the water sample is 0.02mg/l indicates there is no phosphorus loss from agricultural sites entering lakes.

BOD concentration in the water sample is 5.0mg/l. The BOD value indicates less quantity of organic waste in the Lake water making it moderately clean.

14.5.7 Heavy metals

Arsenic and Lead concentration in the water sample is <0.01mg/l and <0.05 mg/l respectively.

Coliform analysis can indicate the degree of possible contamination by human sewage, and possible presence of other pathogens, present in the water. Total Coliform in SW1 is 110 MPN/100ml.

14.6 Soil quality

Soil samples were collected from selected locations to establish the baseline soil conditions in the study area. Representative soil samples from depth (15cm) were collected for estimation of physic-chemical characteristics of soil.

14.6.1 Physical properties

Results indicate that the clay content is 22% at SQ1, 29% at SQ2, 19% at SQ3 and 54% at SQ4. The sand content varies from 34-52% while silt content is varying from 12-39%. The porosity is ranging from 7.4% by mass to 10.5% by mass. Lower values of bulk density varying from 1.17 to 1.24gm/cc. indicate good soil structure.

Texture of SQ1(Automotive Square) is classified as Sandy Clay Loam, SQ2 as Medium Loam, SQ3 as Sandy Loam and SQ4 as Clayey. The soils varied in moisture content from dry through moist to wet types. Moisture content varies from 3.7% to 31.3%.

14.6.2 Chemical Properties

The collected soil samples were analyzed for various chemical properties. The parameters selected were pH, electrical conductivity, Organic Matter, Nitrogen,

Exchangeable Potassium, Phosphorus, Sulphate and Sodium. pH is an important factor which indicates the alkaline and acidic nature of soil and gives the idea of nutrient availability, microbial activity and physical condition of the soil. The soil in the study area is alkaline in nature as the pH value is varying from 7.75 to 8.58. Conductivity is ranging from 80 to 175µS/cm. The total Nitrogen in the soil samples in the study area varies from 728mg/100g to 1784mg/100g.The substantial amount of the nitrogen in the soils of the study area is contributed by nitrogen fixing bacteria of the genus *Rhizobium* associated with the leguminous plants of the area which constitute an appreciable proportion of the plant species.

Organic matter is an important soil health indicator as it contributes to the biological, chemical, and physical properties of the soil. Organic matter serves as a reservoir of nutrients and water in the soil, aids in reducing compaction and surface crusting, and increases water infiltration into the soil. The organic matter in the soil samples is ranging from 1.5% to 2.6%. It is also responsible for the stability of soil aggregates.

The phosphorus concentrations ranged from 33mg/100g to 94mg/100g. The total content of the basic chemicals like K, gives the extent of leaching of the soil where the concentration of exchangeable Potassium varies from 77.1mg/1000g to 251.9mg/1000g.

The analytical results of the soil samples are presented in the Table 14.6.

Parameter & unit		Monitoring location					
	SQ1 Automotive Square	SQ2 New Airport Area	SQ3 Between Prajapati Nagar and Vaishno Devi Chawk	SQ4 Between Subhash Nagar & Rachana Ring Road			
рН	7.75	7.84	8.58	8.02			
Electrical Conductivity (µS/cm)	175	58	80	86			
Sand (%)	52	48	42	34			
Silt (%)	26	23	39	12			
Clay (%)	22	29	19	54			
Moisture Content (%)	31.3	6.2	3.7	8.9			
Infiltration rate (mm/hr)	14.5	10.3	11.2	8.6			
Bulk Density (gm/cc)	1.24	1.19	1.21	1.17			

Table 14.6: Soil samples analysis results

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

1:

NOV 2013

Parameter & unit		Monitoring location					
	SQ1 Automotive Square	SQ2 New Airport Area	SQ3 Between Prajapati Nagar and Vaishno Devi Chawk	SQ4 Between Subhash Nagar & Rachana Ring Road			
Porosity (%)	9.2	9	10.5	7.4			
Organic Matter (%)	1.7	2.1	2.6	1.5			
Nitrogen (mg/100 g)	1784	1024	1429	728			
Exchangeable Potassium (mg/1000g)	203.3	177.8	251.9	77.1			
Phosphrous (mg/100 g)	94	57	72	33			
Sulphate (as SO ₄) (mg/kg)	298	7.6	51.9	16.2			
Sodium as (Na) (mg/kg)	257	54.1	149.2	45			

14.6.3 Biological Environment

The main impact on biological environment will be from the tree felling. Data pertaining to the field survey indicates that total 41 species will be felled due to the project. Primary survey of the terrestrial ecology indicates that no rare endangered species listed in the IUCN are getting affected due to the project. The main species are given in Table 14.7.

Table 14.7: Summary of Trees

Corridor	Location	Length	Trees to be felled
Corridor – 1 (North – South)	Automotive Square to Depot at KHAPRI	19.658 Km	85 Nos.
Corridor – 2 (East – West)	Prajapati Nagar to Lokmanya Nagar	18.557 Km	74 Nos.

Hence, a total of 159 trees are likely to be felled for the project construction.

14.7 POSITIVE IMPACTS DUE TO THE PROJECT

The metro rail will not only offer commuters a more secure and comfortable travel experience that comes with world class facilities, but it will also reduce the time of travelling and rush hour commuting. Its wide network coverage and connections will provide a very positive impact on daily commute of the people of Nagpur city. Some of the positive environmental impacts are as follows:

• Employment opportunities

- Enhancement of Economy
- Less fuel consumption
- Traffic congestion reduction
- Less GHG emissions
- Reduction in Air pollutant emission

The different components of benefits include:

- Vehicles off the Road due to Metro
- Vehicle KM Saved by Metro passengers
- Amount of travel time saved by Metro Passengers and by the Remaining Road Passengers (due to reduced congestion and increased speed on the road)
- Fuel consumption saved due to shifting to Metro
- Reduction in vehicular emissions in tonnes and the reduction in related emission cost
- Reduction in total and fatal accidents and savings in Accident Costs
- Reduction in Vehicle maintenance and operation Cost.
- Travel time savings to remaining road users due to release of road space, reduced congestion and improved speeds.

14.8 ANTICIPATED IMPACTS AND MITIGATION MEASURES

The environmental impact assessment of the project is based on the Baseline Environmental Status of the Area. The proposed project will have impacts on the environmental attributes in construction and operation phase. During construction phase which may be regarded as temporary or short-term; and the operation phase impacts may have long term effects. The environmental impacts due to construction phase and operation phase are discussed in the following subsections.

14.8.1 Impacts during Construction Phase

Potential sources of the construction phase environmental impacts are earthwork, bituminous work, concreting, setting up of labour camps etc. However, the construction phase impacts will be short-term and localized and can be mitigated by adopting appropriate mitigation measures.

14.8.2 Traffic Diversion and Risks to Existing Buildings

During construction, traffic diversions on roads will be essentially required. As most of the construction activities will be confined to centre of the road and most of the roads are four lanes, it will be appropriate that the side lanes may also be utilised for traffic

and also for smooth construction activities. Advance progress of information/signboards/warning signs will be an advantage to users of any particular road. As most of the proposed sections are elevated and located in the middle of the road with deck width being much less than the existing road width, hence risk to the existing buildings all along the route will be practically negligible. In underground portion, weather by cut and cover or by tunnelling, the building line is considerably away from the proposed cut and cover and tunnels. Hence no risk is foreseen to adjacent buildings. Some of the measures are as follows:

- At the points where traffic is to deviate from its normal path (whether on temporary diversion or part width of the carriageway) the channel for traffic will be clearly marked with the aid of pavement markings, painted drums or a similar device to the directions of the Engineer in Charge.
- One-way traffic operation will be established whenever the traffic is to be passed over part of the carriageway inadequate for two-lane traffic. This will be done with the help of temporary traffic signals or flagmen kept positioned on opposite sides during all hours.
- For regulation of traffic, the flagmen will be equipped with red and green flags and lanterns/lights.
- On both sides, suitable regulatory/warning signs as approved by the Engineer will be installed for the guidance of road users. On each approach, at least two signs will be put up, one close to the point where transition of carriageway begins and the other 120 m away. The signs will be of approved design and of reflectory type, or as directed by the Engineer.

14.8.3 Air Quality

Potential impacts on existing air quality during the construction phase would be due to dust generated during excavation, earth work, vehicles movement, loading and unloading of the construction materials.

Fugitive emissions generated due to vehicular movement are not expected to travel beyond a distance of 50 to 100 m from the point of their origin. Since, there is no habitation within 200 to 300m of the project site the impact on air environment during the construction phase is not expected to be significant as far as air pollution is concerned. Combustion of diesel in different construction equipment could be one of the possible sources of incremental air pollution during the construction phase. Mitigation measures for minimizing impact on air quality during construction phase shall comprise:

- Vehicles with an open load carrying shall not be used for moving potentially dust-producing materials. Vehicles shall have properly fitting side and tailboards.
- Materials having the potential to generate dust shall not be loaded to a level higher than the side and tail boards, and shall be carried in vehicles fitted with cover lids / tarpaulin cover
- Excavated materials shall be placed in the designated dumping/disposal areas.
- Material shall be stabilized during summer season, each day, by watering at every two hours interval.
- The heights from which materials are dropped shall be limited to 1.5 m. to restrict fugitive dust generation.
- Water shall be sprayed at construction sites once every hour for period of two minutes to suppress dust, during handling of excavated dry soil or debris.
- Water sprays shall be used during the delivery and handling of all raw sand, and aggregate and other similar materials, when dust is likely to be created and to dampen all stored materials during dry and windy weather.
- All motorised vehicles on katcha roads on the Site shall be allowed a maximum speed of 15 -20 kilometers per hour.
- Concrete batching plant sites and ancillary areas shall be cleaned frequently and water shall be sprayed to minimise any dust emissions. Tentative sites for locating the construction camps have been identified at the following locations:
 - Lokmanya Nagar (proposed metro depot) Government Land
 - KHAPRI Depot Land Government Land
 - Automotive Square Private Land
- Barriers/hoarding shall be provided securely around all construction work sites during the main construction activity, when reasonably practicable, to contain dust within the site area and also to reduce air turbulence caused by wind or passing traffic.

Workers working in dust generating areas shall use nose masks. Placards advising workers to use nose masks shall be displayed.

14.8.4 Noise Quality

During the construction phase, noise will be generated due to movement of vehicles, and operation of light & heavy construction machineries including pneumatic tools (dozers, tippers, loaders, excavators, graders, roller, concrete mixer, generators, concreting pumps, vibrators, cranes, compressors etc.). The construction activities are expected to produce noise levels in the range of 75 - 95 dB (A).

The construction works will be carried out during the day time in residential areas. The impact of noise produced during the construction will, however, be limited to a distance of about 75 meters at which the noise level of various equipment will come down below 55 dB(A). It could therefore be concluded that the construction activities would not have a significant impact on existing ambient noise levels.

Workers working at noisy areas may be affected (if they do not use ear muffs/plugs), if actual exposures exceeds the prescribed safety limits (8-hour long limit of 90 dB (A)) as per Factories Act / BOCW Act 1996.

Mitigation measures for minimizing noise levels during construction phase are as follows:

- ✓ Stationary equipment shall be located so as to minimize noise impact on the neighbouring community.
- ✓ Plant and equipment known to emit noise strongly in one direction shall be oriented, wherever possible, in a direction away from noise sensitive receptor;
- ✓ Silencers and mufflers shall be fitted and maintained on construction equipments.
- ✓ Work shall be scheduled in such a way that activities that generate high noise levels shall not be done simultaneously;
- ✓ Truck loading, unloading, and hauling operations shall be scheduled so as to minimize noise impact near noise sensitive locations and surrounding communities;
- ✓ Equipment and plant will not be kept idling when not in use
- ✓ Plant at site shall be serviced regularly
- ✓ Placards shall be displayed near high noise areas
- ✓ Earmuffs/Earplugs shall be made mandatory for workers working in high noise areas.

14.8.5 Vibration

Construction activities can result in varying degrees of ground vibration, depending on the equipment and methods employed. Ground vibrations from construction activities do not often reach the levels that can damage structures, but they can achieve the audible and feelable ranges in buildings very close to the site. The construction activities that typically generate the most severe vibrations are blasting and impact pile.

The following mitigation measures will be adopted to reduce the degree of impact due to vibration during construction phase.

NOV 2013

- Avoid impact piling in vibration sensitive areas. Drill pile or sonic piling will be employed in such areas to reduce the impacts on nearby buildings.
- Vibration monitoring will be undertaken as suggested in the environmental monitoring plan and a plan shall be prepared by the contractor to control the damage due to vibration.

Night time pile driving operation or other high vibration generation activities will not be allowed in vibration sensitive areas.

14.8.6 Soil Quality

Site Runoff from unprotected excavated areas can result in excessive soil erosion, especially when soil is highly erodible. Mitigation measures include careful planning, timing of cut and fill operations and re-vegetation. Problems could arise from dumping of construction spoils (concrete, bricks), waste materials (from contractor's camp) etc. causing surface and ground water pollution

The proposed North-West corridor has a construction of underground metro of about 3Km. Underground construction is a specialised and complex task. This is safety reasons near airport. Elaborate measures need to be adopted for collection, transfer and disposal of excavated soil as suggested below.

- Soil collection, transportation, disposal and its treatment needs to be carried out in a systematic manner.
- Soil collection should be in containers from the construction sites. These containers should be such that soil should not spill during movement to disposal site.
- The excavated soil will be first collected at dumping ground and then transferred to disposal sites.
- Dumping areas shall be approved by the engineer before its disposal.
- Surplus earth may be used with prior approval by the engineer to the nearby site requiring earth filling.

14.8.7 Impact on Terrestrial Ecology

The main impact on biological environment will be from the tree felling. Data pertaining to the field survey indicates that total 41 species will be felled due to the project. Primary survey of the terrestrial ecology indicates that no rare endangered species listed in the IUCN are getting affected due to the project. The main species are given in baseline section of this report. About 159 trees are to be cut due to the project on the following corridors:

Necessary permission from Nagpur Municipal Corporation (NMC) garden department is to be obtained for trees cutting. Compensatory tree plantation will be done in ratio of 1tree to be cut: 10 trees to be planted (1:10).

14.8.8 Impact on Water Quality

Construction activities may have an adverse impact on water bodies due to disposal of waste. The waste could be due to: the spillage of construction materials, dumping of used water from the stone crusher, oils and greases and labour camp. But the quantities of such spills are very negligible. Care, however, needs to be taken to provide adequate sanitary facilities and drainage in the temporary colonies of the construction workers. Provision of adequate washing and toilet facilities with septic tanks and appropriate refuse collection and disposal system should be made obligatory. Contamination of ground water can take place, if the dump containing above substances gets leached and percolates into the ground water table. This is not the case with the present project, as the activity does not involve usage of any harmful ingredients. Moreover, activities are of short duration. Hence, no adverse impact on either ground or surface water quality is anticipated in the present project.

14.9 OTHER IMPACTS

14.9.1 Impact due to Construction Camp

Influx of construction work-force and supplier who are likely to construct temporary tents in the vicinity may be a source of impact on the existing environment. Likely sanitation, health hazards may impact the surrounding environment due to inflow of construction labourers.

14.9.2 Mitigation Measures

- Construction camps sites will be properly demarcated, fenced and access controlled.
- Adequate provision of sanitation, drinking water supply, and primary health facilities.
- Regular health check-ups of worker shall be organized.
- Proper accommodation amenities will be provided to the workers.
- Crèche arrangement for the kids of women labour shall be made.
- Contractor will make arrangement for cooking gas to the workers to prevent illegal tree cutting.
- The construction camps will be located away from the residential areas.
- Awareness program for workers will be arranged
- Preferably local labour will be employed

14.9.3 Impact due to Equipment Storage and Machinery Maintenance

Proper maintenance shed for regular maintenance of the construction vehicles will be provided in the construction yards. Waste emanating from the maintenance shed should not be allowed to spread over to the nearby areas. Oil and grease separator will be provided. Oil and grease change of equipment and vehicles should be carried out in the service areas designated for vehicles. Wastes should be collected and disposed of properly and expeditiously.

14.10 SOCIAL IMPACTS

14.10.1 Socio-Economic Profile of PAPs/ PAHs

The following sections present socio-economic profile of the households likely to be affected by the proposed project. The baseline information collected through household survey provides the socio-economic conditions of affected households. A wide range of data including religion, social category, loss of land and structures, present usage of structures, education, occupation, sources of income, etc. have been collected through the socio-economic survey of households likely to be affected. The data base provides broad understanding of social and economic conditions of project affected households and the likely impacts that people would experience due to proposed project. The Summary of Socio-Economic profile of PAHs is given in table 14.8

Particulars		E-W	N-S	Total		
				No.	%	
Male		138	33	171	53.94	
Female		123	23	146	46.06	
Total		261	56	317	100.00	
PAPs by age group	Less than 6 years	19	3	22	6.94	
	7 to 14 years	28	5	33	10.41	
	15 to 59 years	184	44	228	71.92	
	59 years	30	4	34	10.73	
Total		261	56	317	100.00	
Religion						
	Hindu	35	7	42	85.71	
	Muslim	3	0	3	6.12	
	Bodh	2	2	4	8.16	
	Total	40	9	49	100.00	
Social group						
	General	22	5	27	55.10	

Table 14. 8 – Socio-Economic Prof	ile of PAHs
-----------------------------------	-------------

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

21/39

NOV 2013

OBC 10 1 11 22.45 SC 5 3 8 16.33 ST 3 0 3 6.12 Total 40 9 49 100.00 Occupation - - - - Agriculture / Animal husbandry 2 0 2 0.63 Goxt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 1.89 Children 10 1 11 3.47 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Illitera	Particulars		E-W	N-S	To	otal
SC 5 3 8 16.33 Total 40 9 49 100.00 Occupation Agriculture / Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Oblicent 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 <th></th> <th></th> <th></th> <th></th> <th>No.</th> <th>%</th>					No.	%
ST 3 0 3 6.12 Total 40 9 49 100.00 Occupation Agriculture / Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 3.97 Kilder 10 1 11 3.47 Dotoo E 10		OBC	10	1	11	22.45
Total 40 9 49 100.00 Occupation Agriculture / Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Vunemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 0.95 Children 10 1 11 3.47 Deckutton (excluding children 10 1 11 3.47 Matric 10 1 11 3.47 100.00 Education (excluding children 10 1 11 3.41 10		SC	5	3	8	16.33
Occupation Agriculture / Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Ottomer 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Idleterate 14 1 15 5.0		ST	3	0	3	6.12
Agriculture / Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Education (excluding children 14 1 15 5.08 Hildren 14 1 15 5.08 Middle 40		Total	40	9	49	100.00
Animal husbandry 2 0 2 0.63 Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 2 1 3 0.95 Children 10 1 111 3.47 Education (excluding children 10 1 113 3.47 Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 <td>Occupation</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Occupation					
Govt. Service 2 5 7 2.21 Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 1.57 5.08						
Housewife 71 12 83 26.18 Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32						
Private service 9 0 9 2.84 Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Illiterate 14 1 15 5.08 1.33 4.41 Primary 8 2 10 3.39 1.55 Middle 40 8 48 16.27 Matric 32 8 40 13.56 </td <td></td> <td>Govt. Service</td> <td>2</td> <td></td> <td>7</td> <td>2.21</td>		Govt. Service	2		7	2.21
Rent/ Pension 7 3 10 3.15 Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 77		Housewife	71	12	83	26.18
Self employed 39 3 42 13.25 Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 111 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 14 1 15 5.08 100.00 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 <t< td=""><td></td><td>Private service</td><td>9</td><td>0</td><td>9</td><td>2.84</td></t<>		Private service	9	0	9	2.84
Business 37 10 47 14.83 Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 77 7 34 11.53 Stool – 10000 8		Rent/ Pension	7		10	3.15
Student 74 21 95 29.97 Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Matric 32 8 40 13.56 Graduate 74 12 86 29.15 Graduate 74 12 86 29.15 Dost Graduate 27		Self employed	39	3	42	13.25
Unemployed 2 0 2 0.63 Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 77 34 11.53 Motol 2000 8 1 9 18.37 Motol 20001 - 10000 14 2 16 32.65 10001 - 20000 </td <td></td> <td>Business</td> <td>37</td> <td>10</td> <td>47</td> <td>14.83</td>		Business	37	10	47	14.83
Skilled Worker 2 1 3 0.95 Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Motor 5001 – 10000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 20001 – 50000 3 3 6 12.24		Student	74	21	95	29.97
Unskilled Worker 6 0 6 1.89 Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 74 12 86 29.15 Household Income (Rs.) 100.00 1 18.37 Go01 – 10000 8 1 9 18.37 34.69 J0001 – 20000 15 2 17 34.69 <td></td> <td>Unemployed</td> <td>2</td> <td>0</td> <td>2</td> <td>0.63</td>		Unemployed	2	0	2	0.63
Children 10 1 11 3.47 Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Literate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Post Graduate 27 7 34 11.53 Household Income (Rs.) 10000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 20001 – 50000 3 3 6 12.24		Skilled Worker	2	1	3	0.95
Total 261 56 317 100.00 Education (excluding children below 6 years) Illiterate 1 1 5.08 Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Post Graduate 27 7 34 11.53 Mousehold Income (Rs.) 5001 – 10000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 32.65 10001 – 20000 15 2 17 34.69 20001 – 50000 3 3 6 12.24<		Unskilled Worker	6	0	6	1.89
Education (excluding children below 6 years) Illiterate 14 1 15 5.08 Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Post Graduate 27 7 34 11.53 Mousehold Income (Rs.)		Children	10	1	11	3.47
children below 6 years) Illiterate 14 1 15 5.08 Illiterate 11 2 13 4.41 Illiterate Matric 32 8 40 13.56 Matric 32 8 40 13.56 13 49 16.61 Graduate 74 12 86 29.15 100.00 11.53 Mosehold Income (Rs.) Integrate 242 53 295 100.00 Household Income (Rs.) Integrate Integrate 14 1 32.65 Integrate 5001 – 10000 14 2		Total	261	56	317	100.00
Illiterate 14 1 15 5.08 Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Mousehold Income (Rs.) 242 53 295 100.00 Household Income (Rs.) 32.65 10001 – 20000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 20001 – 50000 3 3 6 12.24 50001 – 100000 1 1 2.04 50001 – 100000 0 1<	、 J					
Literate 11 2 13 4.41 Primary 8 2 10 3.39 Middle 40 8 48 16.27 Matric 32 8 40 13.56 Matric 32 8 40 13.56 Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Post Graduate 27 7 34 11.53 Household Income (Rs.) 5001 – 10000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 32.65 20001 – 50000 3 3 6 12.24 50001 – 100000 15 2 17 34.69 20001 – 50000 3 3 6 12.24 50001 – 100000 0 1 1 2.04 <t< td=""><td></td><td>Illiterate</td><td>14</td><td>1</td><td>15</td><td>5.08</td></t<>		Illiterate	14	1	15	5.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		-	
Middle4084816.27Matric3284013.56Higher secondary36134916.61Graduate74128629.15Post Graduate2773411.53Total24253295100.00Household Income (Rs.)19\$5001 - 100001421632.6510001 - 200001521734.6920001 - 5000033612.245001 - 100000112.0410000 +0000.00						
Matric3284013.56Higher secondary36134916.61Graduate74128629.15Post Graduate2773411.53Total24253295100.00Household Income (Rs.)142Sool – 100001421632.6510001 – 200001521734.6920001 – 5000033612.245001 – 1000000112.0410000 +00000.00						
Higher secondary 36 13 49 16.61 Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Total 242 53 295 100.00 Household Income (Rs.) <5000						
Graduate 74 12 86 29.15 Post Graduate 27 7 34 11.53 Total 242 53 295 100.00 Household Income (Rs.) 5000 8 1 9 18.37 5001 – 10000 14 2 16 32.65 10001 – 20000 15 2 17 34.69 20001 – 50000 3 3 6 12.24 50001 – 100000 0 1 1 2.04 100000 + 0 0 0 0.00						
Post Graduate 27 7 34 11.53 Total 242 53 295 100.00 Household Income (Rs.) < 5000						
Total 242 53 295 100.00 Household Income (Rs.) <						
Household Income (Rs.) < </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
< 5000 8 1 9 18.37 5001 - 10000 14 2 16 32.65 10001 - 20000 15 2 17 34.69 20001 - 50000 3 3 6 12.24 50001 - 100000 0 1 1 2.04 100000 + 0 0 0 0.00	Household Income (Rs.)	lota	272		270	100.00
5001 - 10000 14 2 16 32.65 10001 - 20000 15 2 17 34.69 20001 - 50000 3 3 6 12.24 50001 - 100000 0 1 1 2.04 100000 + 0 0 0 0.00		< 5000	8	1	9	18.37
10001 - 20000 15 2 17 34.69 20001 - 50000 3 3 6 12.24 50001 - 100000 0 1 1 2.04 100000 + 0 0 0 0.00						
20001 - 50000 3 3 6 12.24 50001 - 100000 0 1 1 2.04 100000 + 0 0 0 0.00						
50001 - 100000 0 1 1 2.04 100000 + 0 0 0 0.00						
100000 + 0 0 0.00						_
		Total	40	9 9	49	100.00

Of the total PAPs, majority (15-59 years) are in the prime age of working. Hindus comprise 86% of the total households likely to be affected. As regards, social category of project affected households is concerned General category of households constitute (55%). Major occupations of PAPs are business, self-employment and service (govt. & private). Women members are mainly housewives. Students comprise about 30% of the total PAPs. As regards qualification of PAPs, it may be

observed that graduate and post-graduate comprise 41% followed by those having completed higher secondary, matric, middle, etc. Indicative household incomes were also ascertained through survey. None of the households qualify for consideration as below poverty line family. Monthly income of majority of households is more than Rs. 10000/-. In fact, almost all the households possess assets and consumer durables like, Fridge, TV, Computer, Mobiles, two wheelers, washing machine, micro oven, etc. Overall, economic conditions of PAPs likely to be affected are very good. Adverse impacts of proposed project are not likely to result in impoverishment of PAPs but would have significant financial problems if not compensated as per the prevailing market price

14.10.2 Impact on Structures

A total of 101 structures (74 in EW Corridor and 27 in NS Corridor) of various dimensions shall be affected by the proposed project. Majority of the structures are privately owned. Distribution of structures likely to be affected is summarized in Table 14.9. It may be observed that majority of structures are likely to be affected in east-west corridor. More than 50% of the total structures are single storied followed by double storied structures. Further, multi storied structures (upto 6 floors) comprise about 26.73% of the total structures likely to be affected. Most of the multi storied structures are in CA Road falling in east-west corridor.

Structures Affected (source:CES Primary Survey 2013)								
Structures affected	Cor	ridor	Tot	al				
Structures anected	E-W	N-S	No.	%				
Single storied	40	14	54	53.47				
Double storied	16	4	20	19.80				
Multi storied (4 to 6 floors)	Multi storied (4 to 6 floors) 18 9 27 26.73							
Total 74 27 101 100.00								
%	73.27	26.73	100.00					

Table 14.9: Structures Affected

Structures likely to be affected are of three categories (pucca, semi-pucca and kutcha) as per the building materials used for the construction. Semi-pucca structures are those which do not have RCC roof whereas kutcha structures are those which are made of wood, bamboo, straw, GI sheet, etc and can be shifted from the existing place to another location without much damage. Pucca structures constitute about 77.23% of the structures whereas semi-pucca and kutcha together comprise the remaining structure (22.77%). Kutcha structures are located at Prajpat Nagar in East-West corridor. *This list is tentative and exact number of structures likely to be affected can be worked out during detailed planning stage before taking-up of construction activity.*

Typology of Structures Affected (source CES Primary Survey 2013)								
Typology of structure	EW	NS		Total				
Typology of structure		NO	No.	%				
Pucca	57	21	78	77.23				
Semi- pucca	13	6	19 18.81					
Kutcha	4	0	4 3.96					
Total	74	27	27 101 100.00					

Table 14.10: Typology of Structures Affected

Structures likely to be affected have been identified as per the present use. Majority of the structures in both the corridors is being used for commercial purposes. Structures used for residential and residential cum commercial purposes comprise 25.74% and 25.74% respectively. Structures used for commercial purposes comprise 48.51% of the total structures. (Refer Table 14.11).

Structures Affected by Use (source:CES Primary Survey 2013)							
Present use	E-W	N-S	То	otal			
Fresent use	C-AA	11-3	No.	%			
Residential	20	6	26	25.74			
Commercial	35	14	49	48.51			
Residential cum commercial	19	7	26	25.74			
Total	74	27	101	100.00			

Table 14.11: Structures Affected Corridor-Wise

Extent of impacts on individual structures was assessed based on drawings as well as site verification. Out of the total structures likely to be affected, in 101 structures, the extent of impact is more than 35% and as a consequence occupants of these structures will be displaced. In 19 structures, safety of individual structure after dismantling will determine the continuance or displacement of the occupants. Extent of impact on structures is given in Table 14.12

Extent of Impacts on Structures (source _: CES Primary _{Survey 2013)}								
Extent of Impact (in 9/)	Cori	ridor	Tot	al				
Extent of Impact (in %)	E-W	N-S	No.	%				
Less than equal to 35	17	17 2 19 18.81						
More than 35	More than 35 57 25 82 81.19							
Total	74 27 101 100.00							
%	73.27	26.73	100					

NOV 2013

14.10.3 Impacts on Common Property Resources (CPRs)

Besides, impacts on structures and land area the proposed project will also affect several common property resources (government structures, community, religious, etc). Distribution of CPRs affected as per ownership is given in Table 14.13. Majority of the common property resources likely to be affected belong to different departments/agencies. These structures comprise boundary walls, office buildings, guard room and structures used for other purposes. Similarly, boundary walls and other structures of educational institutions are also likely to be affected. Further, a few temples (3 in E-W corridor and 1 in N-S corridor), one hand pump and and one Piau (drinking water post) are also likely to be affected. In both the corridors, major portions of the structures would be affected.

Common Property Resources (source: CES Primary Survey 2013)						
CPRs	E-W	N-S		Total		
CFK3	C-AA	IN-3	No.	%		
Govt. structures						
Boundary Wall	10	5	15	31.25		
Guard room	1	0	1	2.08		
Other structures	6	6	12	25.00		
Educational Institutions			0	0.00		
Boundary Wall	6	2	8	16.67		
Others	2	4	6	12.50		
Religious (Temple)	3	1	4	8.33		
Piau/ Well	1	1	2	4.17		
Total	29	19	48	100.00		

Table 14.13: Common Property Resources

14.10.4 Impacts on Land

Metro stations have been planned within the road land mostly and as such additional land area is not proposed for it. But, additional land area is required for providing access to metro stations, parking facilities near stations, running sections, yards, curves, etc. Land area required for the proposed project has been worked out as per the design. Distribution of land area required for various purposes is presented in Table 14.14.

LAND REQUIREMENT DETAILS					
	NAGPUR N	IETRO RAIL PROJECT	г		
LAND DETAILS	PRAJAPATI NA	ST CORRIDOR GAR TO LOKMANYA AGAR	NORTH-SOUTH CORRIDOR AUTOMATIVE SQUARE TO KHAPRI DEPOT		
	GOVT. LAND (in sqm)	PVT. LAND (in sqm)	GOVT. LAND (in sqm)	PVT. LAND (in sqm)	
STATIONS EXIT/ENTRY	3644.80	7769.40	7525.30	13812.50	
RUNNING SECTION	3255.30	5680.80	101882.00	19025.90	
DEPOT AREA	258973.00		339000.00		
TRAFFIC INTEGRATION/PARKING	8779.10	1465.70	53759.80	5179.20	
TOTAL	274652.20	14915.90	502167.10	38017.60	
TOTAL GOVT LAND	776819.30	SAY 77.68 HECTARES			
TOTAL PVT LAND	52933.50	52933.50 SAY 5.3 HECTARES			

Table 14.14 - Area Likely to be Affected (Sqm)

Additional private land required for the project shall be acquired as per the provisions of Land Acquisition Act, 1894. The Act provides for compulsory acquisition of land which includes vacant as well as built up properties. Private land constitutes about 4.83% of the total land requirement. Majority of the land required (94.56%) is government land. Government land shall be transferred as per the established procedure. Besides, 0.17% of the land likely to be affected belongs to religious institutions.

14.11 Impacts during Operation Phase

The operation phase impacts are as follows:

14.11.1 Water Quality

During operation phase the main source of water pollution will be Oil spillage during change of lubricants, cleaning and repair processes, in the maintenance Depot cum workshop for maintenance of rolling stock. The spilled oil will be trapped in grit chamber for settling of suspended matter. The collected oil should either be auctioned or incinerated, so as to avoid any underground water contamination.

14.11.2 Water Supply

Water requirement at railways stations will be 45 l/d as per the recommendation of CPHEEO. Since all the station are locate in the urban areas, water requirement

meeting the need has been take for personal use of staff, fire demand, make up water for air conditioning and ventilation and water loss. The water demand for each station will be approximately 100m³per day. Adequate provisions for meeting the water demand at each station have been taken. Platform washing requirement has been worked out at metro stations has been taken at the rate of 2 liter per m². Fire fighting requirement has been taken as per the existing norms of Maharashtra Government.

14.11.3 Waste Disposal

The refuse from railway station includes; Garbage, Rubbish, and Floor Sweepings. The collection and removal of refuse in a sanitary manner from the Station is of importance for effective vector control, aesthetic improvement, and nuisance and pollution abatement.

For the maintenance of adequate sanitary facilities, containers/collection bins not exceeding 120-litres and equipped with side handles will be appropriately designed and installed at stations and platforms.

14.11.4 Noise Quality

During the operation phase the main source of noise will be from running of metro trains. Noise radiated from train operations and track structures generally constitute the major noise sources. Airborne noise is radiated from at-grade and elevated structures, while ground-borne noise and vibration are of primary concern in underground operations.

The wayside noise levels (Leq) has been worked out for peak headway to be 66.92 dB (A) for North South Corridor and 77.63 dB (A) for at 15m distance in 2041. The noise levels have been worked at elevated section for different distance from the metro is given in the following table 14.15.

Locations	Project Noise level at 10m distance (Peak Headway)	Ambient noise level L ₁₀	Cumulative Impact
Automotive Square	74.06	70.05	75.65
Sri Guru Govind Singh Educational Institute	74.06	74.7	77.4
Z.P. School Patawardhan Technical High School & College	74.06	64.09	74.47
Bank of Maharashtra near	74.06	72.06	76.18

Table 14.15: Cumulative Impact due to Increase Noise

27/39

NOV 2013

Locations	Project Noise level at 10m distance (Peak Headway)	Ambient noise level L ₁₀	Cumulative Impact
proposed Sitaburdi station (Munje Chawk)			
NEERI Campus	74.06	74.57	77.07
Mayuresh Apartment (at	74.06	63.25	74.39
proposed mayuresh station)			
Existing Terminal Building	74.06	70.0	75.49
Barren land of MIHAN SEZ	74.06	55.38	74.06
Saboo Hospital	80.24	72.31	80.88
Ashish Tower	80.24	70.08	80.71
Mayo Hospital	80.24	71.03	80.73
Ram Mandir	80.24	75.09	81.40
Govardhan Das Rawal High School	80.24	67.00	80.24
Salpeker's Brother's Petrol Pump	80.24	75.44	81.48
Dharampeth Polytechnic & Science College	80.24	71.23	80.75
St. Xavier's High School	80.24	69.91	80.62

It is observed from the above table that there will be significant increase in noise levels during in 2041 due to the operation of metro.

It may be inferred from the above that there will be significant impact due to increase in the sound level. Therefore it is proposed to provide 6mm thick Poly-carbonated solid Plate may be provided as noise barriers. The noise transmission loss due to these barriers will be about 29dB (A).

Stretches identified for the provision of Noise Barriers are presented in Table 14.16.

SI. No.	Name of Stretch	Length of Noise Barrier (km)
1	East-West Corridor	
1.1	Ambedkar Chowk – Jhansi Rani Chowk	6.5
1.2	Jhansi Rani Chowk-Dharampeth College	4.0
2	North-South Corridor	
2.1	Karvi Chowk-Kasturchand Park	2.5
2.2	Sitabuldi-Shekhar Nagar	6.0
	Total length of Noise barrier	19.0

Table 14.16: Provision of Noise Barriers in Different Stretches

14.11.6 Vibration

As discussed earlier, it is observed that the vibration is ranging from 29 VdB to 60 VdB along the project corridor. High vibrations (78VdB-84.7VdB) were recorded along the sections which are passing through existing NH7 and Hingna Road. It is due to movement of heavy vehicles on the highway. It is expected that vibration levels are likely to be increased due to operation of the Metro. Past studies (Source: http://indiatoday.in/story/delhi-metro-line-tremors-every-three-

minutes/1/158027.html) have shown that the vibrations have been recorded between 60VdB and 72VdB due to operation of the Metro. It is also recorded that vibration levels have reached up to 95VdB when metro is running at a high speed 75-80Km/h. Therefore it is suggested that following mitigation measures are to be adopted to reduce the intensity of impact due to vibration.

- Metro underground lines should be laid at least 50 meter below.
- If this is not possible, mass spring system should be provided in the underground section.
- Rubber pads should be provided to reduce the intensity of the vibration.
- To keep vibration minimum at elevated section, foundation system shall be designed in such a way that vibration can be suppressed at source by providing rubber pads or sand filling.
- Speed reduction upto 50 Km/h may also be considered at critical section.

14.12 Impact on Terrestrial Ecology

There will no impact on terrestrial ecology due to operation of the project.

14.12.1 Accidental Hazards

In view of the hazards potential involved due to failure of system and accident the on-site and off- site emergency measures have been formulated and will be implemented.

14.12.2 Visual Impacts

The construction of the above corridor will bring about a change in visual look of the streets through which it will operate. An architecturally well-designed structure, which could be aesthetically pleasing and able to reduce impact due to visual disfiguration have been incorporated in present corridor. Since a low profile will cause least intrusion, the basic elevated section should be optimised at the design stage itself.

14.13 ENVIRONMENTAL MANAGEMENT PLAN

The proposed Nagpur Metro Project (east-west & north- south corridor) will provide quick service and safety, traffic congestion reduction, less fuel consumption, employment opportunity, and less air pollution on one hand and problems of Rehabilitation and Resettlement (R&R), soil disposal, etc. on other hand. The environmental issues likely to develop during project construction and operation phases could be minimized by making necessary provision in the project design and adopting Environmental Management Plan (EMP). Summary of Environmental management plan is given in Table 14.17.

Environmental	Mitigation Measures		Implementing	Responsible
Impact	Taken or To Be Taken	Frame	Organization	Organization
DESIGN PHASE				
Metro Alignment	The proposed corridor alignment was selected to minimise the land disturbance to avoid archaeological sites, temples and other environmentally sensitive areas in least.	During Design	DPR and design consultant	PIU of NIT
Cultural Heritage	Avoided by adjustment of alignment.	During Design	DPR and design consultant	PIU of NIT
Loss of Water Bodies	Utmost care taken to avoid alignment crossing water bodies	During Design	DPR and design consultant	PIU of NIT
Inadequate design provision for safety against seismological hazard	combination of forces in the probability of an earthquake likely to occur in seismic zone- III.		DPR and design consultant	PIU of NIT
PRE -CONSTR				
Water requirement	The requirement of water shall be for construction purpose etc., shall be planned and shall be arranged in order to avoid digging of Tube wells.	constructio stage		PIU of NIT (implementin g agency)
Disposal of final treated effluent from treatment	Options for final disposal shall be studied and the suitable	design stag	Contractor ge re	PIU of NIT (implementin g agency)

Table 14.17: Environmental Management Plan

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

30/39

NOV 2013

Environmental	Mitigation Measures	Time	Implementing	Responsible
Impact	Taken or To Be Taken		Organization	Organization
plat	disposal route shall be decided carefully to minimize the impact of receiving bodies. As far as possible zero discharge rules may be adopted.	of treatme		
CONSTRUCTIO	N PHASE			
Environmental Management and Monitoring	This will include institutional requirements, training, environmental management and monitoring	and after	Contractor	PIU of NIT (implementing agency)
Dust	Water should be sprayed during construction phase, wherever it is required to avid dust. Vehicles delivering materials should be covered to reduce spills and dust blowing off the load.	0	Contractor	PIU of NIT (implementing agency)
Air Pollution	Vehicles and machinery are to be regularly maintained so that emissions conform to National and State AAQ Standards.	with and continuing throughou	Contractor	PIU of NIT (implementing agency)
Equipment Selection maintenance and operation	Construction plants and equipment will meet recognized international standards for emissions and will be maintained and operated in a manner that ensures relevant air, noise, and discharge regulations are met.	constructi	Contractor	PIU of NIT (implementing agency)
Noise	Noise standard at processing sites, will be strictly enforced as per GOI noise standards. Workers in vicinity of strong noise will wear earplugs and their working time should be limited as a safety measure. At construction sites within	Beginning and through constructi on	Contractor	PIU of NIT (implementing agency)

Environmental	Mitigation Measures	Time	Implementing	Responsible
Impact	Taken or To Be Taken	Frame	Organization	Organization
Vibration	150m of sensitive receptors construction will be stopped from 22:00 to 06:00. Machinery of noise barriers (Stone walls and plantation) for silence zones including schools and hospitals. The vibration level limits	Poginping	Contractor	PIU of NIT
VIDIATION	at work sites adjacent to the alignment shall conform to the permitted values of peak p velocity as given in article project SHE Manual	Beginning and through constructi on	Contractor	(implementing agency)
WATER				
Contamination from Wastes	All justifiable measures will be taken to prevent the wastewater produced in construction from entering directly into rivers and irrigation system	ut constructi	Contractor	PIU of NIT (implementing agency)
Wastage of water	Measures shall be taken to avoid misuse of water. Construction agency shall be instructed accordingly to follow strict procedures while using the water for construction and drinking purpose.	with and continuing throughou t constructi on	Contractor	PIU of NIT (implementing agency)
Sewerage disposal during construction at Service Centres		ut constructi	Contractor	PIU of NIT (implementing agency)
Sanitation and Waste Disposal in Construction Camps		and during building of constructi on camps	Contractor	PIU of NIT (implementing agency)

Environmental	Mitigation Measures	Time	Implementing	Responsible
Impact	Taken or To Be Taken	Frame	Organization	Organization
	Garbage will be collected in a tank and disposed of daily. Special attention shall be paid to the sanitary condition of camps. Camps will be located at a minimum distance of 200 m from water sources.			
SOIL				
Quarrying	carried out at approved and licensed quarries only.		Contractor	PIU of NIT (implementing agency)
FLORA AND FA				
Loss of trees and Avenue Plantation	Areas of tree plantation cleared will be replaced according to Compensatory afforestation Policy under the Forest Conservation Act. Trees will be planted against every tree cut as per norms.	completio n of constructi on	Forest Department	PIU of NIT (implementing agency)
SOCIAL				
Loss of Access	Temporary access should be built at the interchange and other roads.		Contractor	PIU of NIT (implementing agency)
	If there are traffic jams during construction, measures should be taken to relieve the congestion with the co- ordination of transportation and traffic police department		Contractor	PIU of NIT (implementing agency)

Environmental	Mitigation Measures	Time	Implementing	Responsible
	Taken or To Be Taken	Frame		-
Environmental Impact Safety with vehicles, people and livestock and signage	 Taken or To Be Taken Safety education and fines. Allow for adequate 	Frame During constructi	Implementing Organization Contractor	Responsible Organization PIU of NIT (implementing agency)
	activities causing disruptions or access restrictions	<u> </u>	0.1.1	
Increase in disease Water-borne Insect-borne Communicable	 Make certain that there is good drainage at all construction areas, to avoid creation of stagnant water 	constructi on	Contractor	PIU of NIT (implementing agency)
diseases	 bodies. Provide adequate sanitation and waste disposal at construction camps. Provide adequate health care for workers and locate camps away from vulnerable groups 	ut constructi on	Contractor	
and storage areas	depots and storage areas shall be as per the contract specifications.	constructi	Contractor	PIU of NIT (implementing agency)
OPERATION PH				
Noise and Vibration	Suitable measures should be considered where warranted. The public shall be educated about the regulations of noise and vibration pollution and its implications.	completio n of constructi	PIU/EMP implementing agency	PIU of NIT (implementing agency)

Environmental	Mitigation Measures	Time	Implementing	Responsible
Impact	Taken or To Be Taken	Frame	Organization	Organization
WATER				
Oil pollution	Suitable treatment shall	During	PIU/EMP	PIU of NIT
	be taken for treatment	operation	implementing	(implementing
	oil before discharging	of the	agency	agency)
	the wastewater			
	specially in depot areas.	plant		
Maintenance of	The urban drainage	0 0	PIU/EMP	PIU of NIT
Storm Water	systems will be			(implementing
Drainage System	periodically checked and cleared so as to	of	agency	agency)
System	ensure adequate storm	monsoon		
	water flow.			
Disposal of final	Options for final	During	PIU/EMP	PIU of NIT
treated effluent		0	implementing	(implementing
from treatment	studied and the suitable	of the		agency)
plat	disposal route shall be	treatment		
	decided carefully to	plant		
	minimize the impact of			
	receiving bodies. As far			
	as possible zero			
	discharge rules may be			
SOCIAL	adopted.			
	New buildings should	Througho	Planning	PIU of NIT
noise	be prohibited within 50		•	(implementing
disturbances	m of the edge of		/PIU	agency)
	carriageway. No new			C ,,
	schools and hospitals			
	should be allowed			
	within 200 m of	period.		
	carriageway.			

14.14 MITIGATION MEASURES

The main aim of mitigation measures is to protect and enhance the existing environment of the project. These measures should have positive effects on environment. Environmental mitigations are essential and shall be undertaken in various phase of project cycle viz. pre-construction, construction and operation stage of the project. Some of these have been described in the following section, which includes measures for:

- Compensatory Afforestation and Fencing
- Construction Material Management
- Labour Camp
- Hazardous Waste Management
- Archaeological and Historical Preservation

- Air Pollution Control Measures,
- Noise Control Measures,
- Vibration Control Measures
- Muck Disposal
- Soil Erosion Control
- Water Supply, Sanitation and Solid Waste management
- Traffic Diversion/Management
- Draining of Water from Tunnel
- Rain water harvesting
- Management Plans for Depot
- Utility Plan
- Energy Management
- Training and Capacity Building

14.15 Environmental Monitoring Programme

The environmental monitoring is required for the construction and operational phases. The parameters need to be monitored are water quality, air quality, Noise levels Erosion and Siltation, ecology and vibration levels. The detail monitoring programmes during construction and operational stages are presented in Table 14.8.

01	I.Environment Environmental Monitoring Programme Institutional Responsibility						
	Environment			-			
No	Component	Parameters	Locations	Frequency	Implementation	Supervision	
DL	JRING PROJEC	T CONSTRU	CTION PHASE				
1	Air Quality		Total -6 suitable locations. Plant Sites i.e.	samples, Twice a week every		NH	
			HMP/Crusher, Construction sites, Settlements	season during construction Period except monsoon season. One hourly twice a week every season during Construction Period except monsoon season.			

Table 14.18: Environmental Monitoring Programme

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NO

NOV 2013

SI.	Environment	Environment	al Monitoring Prog	gramme	Institutional Res	ponsibility
No	Component	Parameters	Locations	Frequency	Implementation	Supervision
DÜ	RING PROJEC	T CONSTRU	CTION PHASE	-		
2	Water Quality	relevant	At 3- suitable locations, Ground water sampling.	Quarterly, Onco in every season.	Concessioner	NIT
3	Noise Level	on dB (A)	At 16-suitable locations i.e. At equipment yards, sensitive sites.	Quarterly, Once in every season.	Concessioner	NIT
4	Vibration Level	on VdB (A)	At 10 locations i.e. Sensitive sites and residential area.	Once in every years.	NIT	NIT
5	Soil Erosion	Visual Observation	2 Entire length of alignment and agricultural fields	and post-	Concessioner	NIT
6	Compensatory Afforestation	No. o roadside plantation	Along the side o the carriageway	•	Concessioner	NIT
7	Flora & Fauna	•	All crossings or surface water bodies along the road and project influence area.	month Periodically	Concessioner	NIT
8		Borrow areas redevelopm ent and Top soil Managemen ts		Once in a week	Concessioner	NIT

SI.	Environment	Environment	al Monitoring Prog	gramme	Institutional F	Responsibility						
Nc	Component	Parameters	Locations	Frequency	Implementatio	on Supervision						
DURING PROJECT CONSTRUCTION PHASE												
1	Air Quality		At 4- suitable locations.	24 hourly samples, Twice a week every season		NIT						
		NOx, CO		during construction Period except monsoon season. One hourly, twice a week every season during								
				Construction Period except monsoon season.								
2	Water Quality	CaCo _{3,}	At 3- suitable locations of Ground water	Pre-monsoon & post-monsoon, once in every two years	NIT	NIT						
3	Noise Level	on dB (A) scale;Leq dB(A) Day	At 16 suitable locations i.e. Sensitive sites and residential area.	Once in eve years.	ry NIT	NIT						
SI. N	Environment	Environmen	tal Monitoring P	Ionitoring Programme		Institutional Responsibility						
0	Component	Parameters	Locations	Frequency	Implementat n	io Supervisio n						
DL	IRING OPERAT	ION PHASE										
4	Vibration Level	Noise levels on VdB (A) scale; Day /Night. Max.& Min	At 20 locations i.e. Sensitive site and residential area.		NIT	NIT						
	Erosion and siltation	Soil erosion rates, stabilit of bank embankment etc.	High Emb of yBridge,shoulder and slopes	Twice a yea s	r.NIT	NIT						

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

6	Ecology	Status of	All along available	Once	every	NIT	NIT
		Afforestation	land either side of	year			
		programmes	the project road				
		of green belt					

14.16 ENVIRONMENTAL BUDGET

A budgetary cost estimate for environmental monitoring is suggested for construction phase period assuming 3 years and per annum cost for operation phase. Construction phase monitoring cost (tentatively) is worked out to be INR **5.904 million** and operation phase monitoring cost per annum is worked to be INR **1.128 million**.

R&R Provisions have been made according to the existing Govt. Policies such as NRRP, 2007 and policies followed for Maharashtra Urban Transport Project. Budgetary estimate for R&R Provisions (tentatively) is estimated as **Rs. 288 Crore**

A budget of **Rs. 87.252 million** has tentatively been kept towards the Environmental Management Plan of the Nagpur Metro project. The cost for Dust suppression during Construction, Solid Waste Management, Facilities & equipment and Cooking Fuel for construction workers is incidental to the Concessionaire.

CHAPTER 15

SECURITY MEASURES FOR A METRO SYSTEM

- 15.1 INTRODUCTION
- **15.2** NECESSSITY OF SECURITY
- **15.3** THREE PILLARS OF SECURITY
- **15.4** PHASES OF SECURITY
- **15.5** RESPONSIBILITIES AND PARTNERSHIPS
- **15.6** PROPOSED PROVISIONS FOR SECURITY SYSTEM

Chapter -15

SECURITY MEASURES FOR A METRO SYSTEM

15.1 INTRODUCTION

Metro is emerging as the most favoured mode of urban transportation system. The inherent characteristics of metro system make it an ideal target for terrorists and miscreants. Metro systems are typically open and dynamic systems which carry thousands of commuters. Moreover the high cost of infrastructure, its economic impotence, being the life line of city high news value, fear & panic and man casual ties poses greater threat to its security. Security is a relatively new challenge in the context of public transport. It addresses problems caused intentionally. Security problems or threats are caused by people whose actions aim to undermine or disturb the public transport system and/or to harm passengers or staff. These threats range from daily operational security problems such as disorder, vandalism and assault to the terrorist threat.

15.2 NECESSSITY OF SECURITY

It is well known that public transportation is increasingly important for urban areas to prosper in the face of challenges such as reducing congestion and pollution. Therefore, security places an important role in helping public transport system to become the mode of choice. Therefore, excellence in security is a prerequisite for Metro system for increasing its market share. Metro railway administration must ensure that security model must keep pace rapid expansion of the metro and changing security scenario.

15.3 THREE PILLARS OF SECURITY

Security means protection of physical. Human and intellectual assets either from criminal interference, removal of destruction by terrorists or criminals or

CHAPTER-19: SECURITY MEASURES FOR A METRO SYSTEM

incidental to technological failures or natural hazardous events. There are three important pillars of security as mentioned under:

- (i) The human factor;
- (ii) Procedures; and
- (iii) Technology

Staff engaging with the passengers create a sense of re-assurance which can not fully be achieved by technology. For human factor to be more effective staff has to be qualified, trained, well equipped and motivated. They should bs trained, drilled and tested. The security risk assessment is the first step for understanding the needs and prioritizing resources. The organization of security should be clear and consistent. Security incidents, especially major ones, often happen without warning. Emergency and contingency plans must be developed communicated and drilled in advance.

There are number of technologies which can be used to enhance security e.g. surveillance systems. The objectives of the security systems are to differ i.e., making planning or execution of on attack too difficult, detect the planned evidence before it occurs deny the access after in plan of attack has been made and to mitigate i.e. lessen the impact severity as the attack by appropriate digits.

15.4 PHASES OF SECURITY

There are three phases of security as under:

(i) Prevention

These are the measures which can prevent a security incidence from taking place. These can be identified by conducting a risk assessment and gathering intelligence. Prevention begins with the daily operational security -problems. Uncared for dirty, damaged property is a breeding ground for more serious crime.

(ii) Preparedness

Plans must be prepared to respond to incidents, mitigate the impact. Train staff accordingly and carry out exercises. The results of the risk assessment give a basis for such plans.

Transport system must have laid down procedures/instructions for the quick recovery of normal service after an incident. Recovery is important for the financial health of the operation, but it also sends a clear message to public, it reassures passengers and gives them confidence to continue using the system. Communication is key to the quick restoration after such incidents. Restoration should ^also include an evaluation process for the lessons learnt.

15.5 RESPONSIBILITIES AND PARTNERSHIPS

Security is a sovereign function and hence is the responsibility of the state. Security in public requires clear governance. Responsibility should be clearly defined. In the present scenario, this is the responsibility of the Central Government/MHA in Delhi to ensure secured travelling to the public including Delhi Metro. In other states security would be the responsibility of the concerned state govt.

CISF has been entrusted with the job of providing security to Delhi Metro and law & order/ prevention & detection of crime are under the domain of Delhi Police.

15.6 PROPOSED PROVISIONS FOR SECURITY SYSTEM

- CCTV coverage of all metro stations. With a provision of monitoring in the Station Security Room as well as at a Centralized Security Control Room with video wall, computer with access to internet TV with data connection, printer and telephone connection (Land Line and EPBX) for proper functioning, cluster viewing for stations. Cost of this is included in Telecom estimate.
- Minimum one Baggage Scanners on all entry points (1 per AFC array). Additional requirement of baggage scanners at heavily crowed stations i.e at interchange may also be required. Cost of one baggage scanner is Rs. 15.0 Lacs approximately, on 2013 prices.
- 3. Multi-zone Door Frame Metal Detector (DFMD) minimum three per entry (2 per AFC array). The number can increase in view of the footfall at over

CHAPTER-19: SECURITY MEASURES FOR A METRO SYSTEM

crowed stations. Cost of one Multi-zone DFMD is Rs 2.15 Lacs approximately.

- 4. Hand held Metal Detector (HHMD) as per requirement of security agency, minimum two per entry, which varies from station to station with at least 1.5 per DFMD installed at the station. Cost of one HHMD is Rs 6000/- approximately at 2012 prices.
- 5. Bomb Detection Equipments with modified vehicle as per requirement of security agency. One BDS team per 25 30 station will be required at par with present criteria of DMRC. Cost 1.25 crores including vehicle.
- 6. Bomb Blanket at least one per station and Depots. Cost is Rs. 50,000/per bomb blanket.
- 7. Wireless Sets (Static and Hand Held) as per requirement of security agency.
- 8. Dragon light at least one per station and vital installation.
- 9. Mobile phones, land lines and EPBX phone connections for senior security officers and control room etc.
- 10. Dog Squads (Sniffer Dog), at least one dog for 4 metro stations which is at par with current arrangement of Delhi Metro. Cost of one trained sniffer dog is Rs 1.25 Lacs approximately. Dog Kennels alongwith provision for dog handlers and MI room will also be provided by metro train depot administration including land at suitable places line wise.
- 11. Bullet proof Morcha one per security check point (i.e. AFC array) and entry gate of metro train depot administration metro station.
- 12. Bullet proof jackets and helmets for QRTs and riot control equipments including space at nominated stations. One QRT Team looks after 5-6 metro stations as per present arrangement. One QRT consist of 5 personnel and perform duty in three shifts.
- 13. Furniture to security agency for each security room, and checking point at every entry point at stations. Scale is one office table with three chairs for security room and office of GO and one steel top table with two chairs for checking point.
- 14. Ladies frisking booth 1 per security check point (AFC Arrey)

- 15. Wall mounted/ pedestal fan at security check point, ladies frisking booth and bullet proof morcha, as per requirement.
- 16. Physical barriers for anti scaling at Ramp area, low height of via duct by providing iron grill of appropriate height & design/concertina wire.
- 17. Adequate number of ropes. Queue managers, cordoning tapes, dragon search lights for contingency.
- 18. Iron grill at station entrance staircases, proper segregation of paid and unpaid by providing appropriate design grills etc.
- 19. Proper design of emergency staircase and Fireman entry to prevent unauthorized entry.

CHAPTER 16

DISASTER MANAGEMENT MEASURES

- 16.1 INTRODUCTION
- 16.2 NEED FOR DISASTER MANAGEMENT MEASURES
- 16.3 OBJECTIVES
- 16.4 LIST OF SERIOUS INCIDENTS REQUIRING USE OF PROVISIONS OF THE DISASTER MANAGEMENT MEASURES
- 16.5 PROVISIONS UNDER DISASTER MANAGEMENT ACT, 2005
- 16.6 PROVISIONS AT METRO STATIONS/OTHER INSTALLATIONS
- 16.7 PREPAREDNESS FOR DISASTER MANAGEMENT

CHAPTER-16

DISASTER MANAGEMENT MEASURES

16.1 INTRODUCTION

"Disaster is a crisis that results in massive damage to life and property, uproots the physical and psychological fabric of the affected communities and outstrips the capacity of the local community to cope with the situation." Disasters are those situations which cause acute distress to passengers, employees and outsiders and may even be caused by external factors. As per the disaster management act, 2005 "disaster" means a catastrophe, mishap, calamity or grave occurrence in any area, arising from natural or manmade causes, or by accident or negligence which results in substantial loss of life or human suffering or damage to, and destruction of, property, or damage to, or degradation of, environment, and is of such a nature or magnitude as to be beyond the coping capacity of the community of the affected area". As per world health organisation (who):

"Any occurrence that causes damage, economic disruption, loss of human life and deterioration of health and services on a scale sufficient to warrant an extra ordinary response from outside the affected community or area."

A disaster is a tragic event, be it natural or manmade, which brings sudden and immense agony to humanity and disrupts normal life. It causes large scale human suffering due to loss of life, loss of livelihood, damages to property and persons and also brings untold hardships. It may also cause destruction to infrastructure, buildings, communication channels essential services, etc.

16.2 NEED FOR DISASTER MANAGEMENT MEASURES

The effect of any disaster spread over in operational area of Delhi Metro is likely to be substantial as DMRC deals with thousands of passengers daily in underground tunnels, viaducts and stations. Disaster brings about sudden and immense misery to humanity and disrupts normal human life in its established social and economic patterns. It has the potential to cause large scale human

suffering due to loss of life, loss of livelihood, damage to property, injury and hardship. It may also cause destruction or damage to infrastructure, buildings and communication channels of Metro. Therefore there is an urgent need to provide for an efficient disaster management plan.

16.3 OBJECTIVES:

The main objectives of this Disaster Management Measures are as follows:

- Save life and alleviate suffering.
- Provide help to stranded passengers and arrange their prompt evacuation.
- Instill a sense of security amongst all concerned by providing accurate information.
- Protect Metro Rail property.
- Expedite restoration of train operation.
- Lay down the actions required to be taken by staff in the event of a disaster in Delhi Metro Rail Corporation in order to ensure handling of crisis situation in coordinated manner.
- To ensure that all officials who are responsible to deal with the situation are thoroughly conversant with their duties and responsibilities in advance. It is important that these officials and workers are adequately trained in anticipation to avoid any kind of confusion and chaos at the time of the actual situation and to enable them to discharge their responsibilities with alertness and promptness.

16.4 LIST OF SERIOUS INCIDENTS REQUIRING USE OF PROVISIONS OF THE DISASTER MANAGEMENT MEASURES

Metro specific disasters can be classified into two broad categories e.g.: Manmade and Natural.

a. Man Made Disaster

- 1. Terrorist attack
- 2. Bomb threat/ Bomb blast
- 3. Hostage
- 4. Release of Chemical or biological gas in trains, stations or tunnels

- 5. Fire in metro buildings, underground/ elevated infrastructures, power stations, train depots etc.
- 6. Train accident and train collision/derailment of a passenger carrying train
- 7. Sabotage
- 8. Stampede

b. Natural Disaster

- 1. Earthquakes
- 2. Floods

16.5 PROVISIONS UNDER DISASTER MANAGEMENT ACT, 2005

A. The National Disaster Management Authority (NDMA)

Establishment of National Disaster Management Authority:-

- (1) With effect from such date as the Central Government may, by notification in the Official Gazette appoint in this behalf, there shall be established for the purposes of this Act (*The Disaster Management Act, 2005*), an authority to be known as the National Disaster Management Authority.
- (2) The National Authority shall consist of the Chairperson and such number of other members, not exceeding nine, as may be prescribed by the Central Government and, unless the rules otherwise provide, the National Authority shall consist of the following:-
 - (a) The Prime Minister of India, who shall be the Chairperson of the National Authority, ex officio;
 - (b) Other members, not exceeding nine, to be nominated by the Chairperson of the National Authority.
- (3) The Chairperson of the National Authority may designate one of the members nominated under clause (b) of sub-section (2) to be the Vice-Chairperson of the National Authority.
- (4) The term of office and conditions of service of members of the National Authority shall be such as may be prescribed.

B. State Disaster Management Authority:

Establishment of State Disaster Management Authority:-

- (1) Every State Government shall, as soon as may be after the issue of the notification under sub-section (1) of section 3, by notification in the Official Gazette, establish a State Disaster Management Authority for the State with such name as may be specified in the notification of the State Government.
- (2) A State Authority shall consist of the Chairperson and such number of other members, not exceeding nine, as may be prescribed by the State Government and, unless the rules otherwise provide, the State Authority shall consist of the following members, namely:- The Chief Minister of the State, who shall be Chairperson, ex officio;
 - (a) Other members, not exceeding eight, to be nominated by the Chairperson of the State Authority;
 - (b) The Chairperson of the State Executive Committee, ex officio.
- (3) The Chairperson of the State Authority may designate one of the members nominated under clause (b) of sub-section (2) to be the Vice-Chairperson of the State Authority.
- (4) The Chairperson of the State Executive Committee shall be the Chief Executive Officer of the State Authority, ex officio: Provided that in the case of a Union territory having Legislative Assembly, except the Union territory of Delhi, the Chief Minister shall be the Chairperson of the Authority established under this section and in case of other Union territories, the Lieutenant Governor or the Administrator shall be the Chairperson of that Authority: Provided further that the Lieutenant Governor of the Union territory of Delhi shall be the Chairperson and the Chief Minister thereof shall be the Vice-Chairperson of the State Authority.
- (5) The term of office and conditions of service of members of the State Authority shall be such as may be prescribed.

C. Command & Control at the National, State & District Level

The mechanism to deal with natural as well as manmade crisis already exists and that it has a four tier structure as stated below:-

- (1) National Crisis Management Committee (NCMC) under the chairmanship of Cabinet Secretary
- (2) Crisis Management Group (CMG) under the chairmanship of Union Home Secretary.
- (3) State Level Committee under the chairmanship of Chief Secretary.
- (4) District Level Committee under the Chairmanship of District Magistrate.

All agencies of the Government at the National, State and district levels will function in accordance with the guidelines and directions given by these committees.

D. Plans by Different Authorities at District Level and their Implementation

Every office of the Government of India and of the State Government at the district level and the local authorities shall, subject to the supervision of the District Authority:-

(a) Prepare a disaster management plan setting out the following, namely:-

- (i) Provisions for prevention and mitigation measures as provided for in the District Plan and as is assigned to the department or agency concerned;
- (ii) Provisions for taking measures relating to capacity-building and preparedness as laid down in the District Plan;
- (iii)The response plans and procedures, in the event of, any threatening disaster situation or disaster;
- (b) Coordinate the preparation and the implementation of its plan with those of the other organizations at the district level including local authority, communities and other stakeholders;
- (c) Regularly review and update the plan; and

(d) Submit a copy of its disaster management plan, and of any amendment thereto, to the District Authority.

16.6 PROVISIONS AT METRO STATIONS/OTHER INSTALLATIONS

To prevent emergency situations and to handle effectively in case 'one arises' there needs to be following provisions for an effective system which can timely detect the threats and help suppress the same.

- (A) FIRE DETECTION AND SUPPRESSION SYSTEM
- (B) SMOKE MANAGEMENT
- (C) ENVIRONMENTAL CONTROL SYSTEM (ECS)
- (D) TUNNEL VENTILATION SYSTEM
- (E) TRACK-WAY EXHAUST SYSTEM (TES)
- (F) STATION POWER SUPPLY SYSTEM
- (G) DG Sets & UPS
- (H) LIGHTING SYSTEM
- (I) STATION AREA LIGHTS
- (J) TUNNEL LIGHTING
- (K) TUNNEL LIGHTING CONTROL FROM BMS
- (L) SEEPAGE SYSTEM
- (M) WATER SUPPLY AND DRAINAGE SYSTEM
- (N) SEWAGE SYSTEM
- (0) ANY OTHER SYSTEM DEEMED NECESSARY

The above list is suggestive not exhaustive actual provisioning has to be done based on site conditions and other external and internal factors.

16.7 PREPAREDNESS FOR DISASTER MANAGEMENT

Being a technological complex system worked by new set of staff, with a learning curve to improve and stabilize with time, intensive mock drills for the staff concerned is very essential to train them to become fully conversant with the action required to be taken while handling emergencies.

7/7

They also need to be trained in appropriate communication skills while addressing passengers during incident management to assure them about their well being seeking their cooperation.

Since learning can only be perfected by 'doing' the following Mock Drills are considered essential:

- a. Fire Drill
- b. Rescue of a disabled train
- c. Detrainment of passengers between stations
- d. Passenger evacuation from station
- e. Drill for use of rescue & relief train
- f. Hot line telephone communication with state disaster management authority.

CHAPTER 17

MULTI MODAL TRAFFIC INTEGRATION

AT METRO STATIONS

- 17.1 INTRODUCTION
- 17.2 PRESENT CONDITION OF TRANSPORT ON CITY ROADS
- 17.3 IMPACT OF BUS/CLUSTERS IN MODE SHARE
- 17.4 BALANCING ACT OF METRO RAIL
- 17.5 TRANSPORT INTEGRATION BY DMRC
- 17.6 METRO FEEDER BUS SERVICE
- 17.7 WAY FORWARD

Chapter - 17

MULTI MODAL TRAFFIC INTEGRATION AT METRO STATIONS

17.1 INTRODUCTION

The Metro Transport Network in Nagpur will cover a length of approximately 39 kms. It will be augmented through enhanced flexibility of criss-cross interchanges to other modes and reduce the travel time of commuters. While Metro provides a high capacity corridor to carry the passengers, the need for integration of with other secondary/intermediate transport modes is getting highlighted more than ever to ensure a seamless transfer. This concept is to provide at least first mile and last mile connectivity to the commuters with in their places of stay. According top priority to this issue, MoUD has laid down policy guidelines to include the need and provisioning of all public, IPT and private modes in the DPRs for the Metro Systems. (*Ref: MoUD (Urban Transport Wing) Advisory Circular no. K-14011/1/2007-UT-IV dated 30.08.2013*).

The share of various modes of secondary/ intermediary modes of travel is complex and debatable issue which is dependent on a large number of variables like available road width, penetration in the residential areas, Road condition, distance from the existing Metro Stations, availability of parking and lay out and availability of circulating areas at the Metro Stations, Business centre or markets & existing traffic densities. These factors relate with each other and evolve with development of new modal mix of transport, infrastructure and changes with the passage of time. Even though for a given urban transport scenario, optimal mode share may be determined from computer based models but actual **optimal mode share** is never achievable on the road due to dynamic nature of demand and supply of transport modes

17.2 PRESENT CONDITION OF TRANSPORT ON CITY ROADS

At present the various mode coming to Metro Stations comprise of State Transport buses, Midi/Mini buses, RTVs, Autos, Rickshaws, E- Rickshaws, Private cars, Two Wheelers and Bi-Cycles. These can be classified in three groups of transport modes namely, Public, IPT and Private.

In public transport group there are Mini City Buses (20 seaters), and large buses of State Transport (50 seaters) and Chartered Buses hired by schools and private offices. Buses form neighbouring states are no less in numbers. Generally the public transports in Nagpur comprises of the buses which are operated by the Maharashtra State Road Transport Corporation.

Auto rickshaws are also an important part of public transports at Nagpur. Earlier, there used to be six seater auto rickshaws but after the restriction laid on its usage by the High Court, only three seater auto rickshaws ply on the roads of Nagpur. After bus, it is these auto rickshaws which are the most important modes of public transport in Nagpur even though they are little expensive. Auto Rickshaw are Intermediate Public Transport (IPT) Modes. Another public transport at Nagpur which can be ranked third among all is the cabs or taxis that run on the streets of Nagpur. Though these are also less in number and the majority of them ply from airport and railways.

In the personalized transport modes, there are Bicycles, Two wheelers and Cars of all possible sizes.

A chaotic situation is observed when all the above mentioned transport vehicles are seen jostling to each other for space for moving forward. More pathetic conditions are seen at the Road Intersections.

The solutions lies in showcasing a workable arrangement of co-existence through identification of good points of each mode and then utilize the same to get the attention and embedding it in public psyche.

Because of high traffic and less capacity as well as length of the roads, average distance between two consecutive vehicles becomes very less. Such situation does not permit speed higher than 15-20 km/hr. This indicates that unless there is some solution to reduce this unmanageable mix of the vehicle fleet, real transport integration may not be possible. While the Road length on main & arterial Roads may not see significant increase and relieve the congestive/ chaotic/ slow moving road traffic, a divergent policy of linking commuters directly

through E-Rickshaw or Mini/Midi size feeder buses using the service/inner road length to supplement the main road traffic will impact the congestion and provide relief to the Metro commuters in reaching out to Metro Stations.

17.3 IMPACT OF BUS/CLUSTERS IN MODE SHARE

Primary reason for using personal vehicle (for buying vehicle) is **to save travel time** during journey. On the other hand, government has tried to increase number of public buses on the road in many different ways.

City bus service in Nagpur has never been consistent. First, it was MSRTC that withdrew the service citing losses as the main reason. This created room for NMC to run the service by roping in a private player. Central Government's changed norms regarding public transport in areas of urban local bodies selected under Jawaharlal Nehru National Urban Renewal Mission (JnNURM) proved a great help. With buses received from the Centre, NMC entered into an agreement with VNIL to operate city bus service. As per the agreement, NMC would get Rs 3,700 per bus per month as royalty. A fleet of new low-floor buses, increased number of frequency, new routes, and brand new service evoked a very good response from Nagpur residents. Within almost no time, Starbus service (as the city bus service is popularly known after the brand of buses) became the most widely used mode of public transport in the city.

However, as time passed, condition of buses deteriorated. Poor maintenance resulted in broken seats, broken handles, damaged wind-shields, mostly non-working digital signs, unclean and unhygienic passenger areas, non-rolling window panes. Of course, these are only major problems commuters have to put up with. 'Starbus' is driven by ill-trained persons, posing threat to plying of other vehicles and people on roads. At many places with heavy traffic throughout the day, it is very difficult for these drivers to man oeuvre wide buses safely.

Government has tried hard to popularize public bus by subsidizing the fare but could not bring higher (and middle) income group to use public bus simply because it is slow. BRT system was introduced with the intention of running public bus through dedicated pathway. But the overall impact has not provided synergy between the user & the Public Transport System in a seamless manner. Therefore objective of achieving optimal mode share remained elusive than reality.

17.4 BALANCING ACT OF METRO RAIL

After introduction of Metro Rail In the city, Traffic and Transportation scenario will significantly change. People will no longer afraid to travel a much longer distance. It is now possible to cover a length of 30-35 km below or within one hour time if main journey is made by metro rail. This is the fastest, safest and most reliable and comfortable mode now available in the city.

In Delhi, in 1980's average passenger trip length was 7-8 km in 1990-2000 average trip length was 8-10 km. After 2000, average trip length started increasing and in 2012-13 it was 15-16 km. It is expected this trip length will increase to 17-18 km after Phase III lines become operational from 2016 and after Phase IV in 2021 trip length may be about 20 km. This shows that the city gets expanded in terms of residential locations and work centers as metro network increases. In a recent survey conducted by one of the most circulated newspaper (Times of India) citizens have expressed maximum satisfaction for DMRC services. Nevertheless, city roads are more congested and the situation is getting worse every day. The benefit of time saving due to metro is very much diluted because of the problem of reaching the metro station and then to the platform to catch the metro.

For Nagpur also, average trip length will be around 7 kms. Hence Metro will definitely help in providing a balancing act.

17.5 TRANSPORT INTEGRATION BY DMRC

If we mean that transport integration is smooth transition from one mode (road based) to the other (metro rail) then it is important that the road based mode should reach the metro station in time, at regular interval so that passenger need not walk long distance to enter the station.

Several measures at Metro may be undertaken for smooth transition for the passengers using metro. Stations are designed user friendly, ambience is kept clean, cold and attractive. User needs like Snack bars, ATMs are available at many stations. Elevator and lift is provided at every station to avoid climbing through stair case. Parking facility, Feeder Bus & Bus stops are three most significant services given by DMRC. In addition, pilot projects for E- Rickshaws and cycle shelters have also been taken up.

The feeder buses, E- Rickshaws & cycle shelters would be expanded based on user demands, service ability and patronage.

The extent of need for above modes depends on the type of stations viz. Interchange Stations, stations with extensive Property Development/ close to Business Centers/ Activity Hubs, stations located on the road medians.

The need for provisioning bus stops/parking areas also differ in case of elevated/underground stations and at the terminal stations.

17.6 METRO FEEDER BUS SERVICE

In Delhi, up to Phase III DMRC will have a total of 236 stations out of which 21 are interchange stations. Many stations are with extensive property development near activity hubs or business centres and that are located on road medians or under the road. To cater to these stations, DMRC has so far deployed 117 feeder buses with a sitting capacity of 18 passengers and total capacity of 30 passengers. The present sanctioned routes are 98 which cover roughly 73 metro stations.

Additional 400 feeder buses have already been ordered through two selected bus operators and these midi buses will have a sitting capacity of 26 and total capacity of 50. The present peak ridership is 59,000 per day and monthly average of 50000 per day. The maximum revenue so far is 4.6 Lakhs per day with a monthly average revenue 4.6 Lakhs per day. It is expected that with additional buses the peak ridership per day will touch around 3.5 lakhs per day. For the stabling and maintenance of these buses a total of 8 feeder bus depots have been planned to keep the ideal run to the minimum and provide safe stabling and upkeep.

Existing Feeder Buses New Feeder Buses Being Introduced Fig. 17.2 - Modal of Feeder Buses

However, feeder bus service facility is still not attained perfection. Bus conditions are not good to travel; service headway is long as it is handled by private operators who would like to wait to fetch more passengers. Services at some routes are very irregular as not many passengers are available during non-peak hours. Passengers have to bank upon auto rickshaws. At some stations entry and exit gates are blocked by waiting buses, rickshaw pullers and vendors. This is irritating and some action is required.

Purchasing only one ticket for a complete journey by using any one or more transport mode is still a dream in India because of multiple ownership/agency control or lack of will to implement such system. In Europe, USA this system is working very well and almost eliminated unhealthy competition. True transport integration will be possible when such system will be operational in Indian cities

17.7 WAY FORWARD

In view of above deliberations in back ground, along with planning for Metro Rail System in any city, there is a need for providing a transportation system which is seamlessly integrated across all modes and provides first mile as well as last mile connectivity. It is also necessary that various public transportation modes including Inter-mediate Public Transport (IPT) and feeder buses etc. work together in order to facilitate increase in ridership to the Metro system and provide ease of using the Metro system by the public at large.

Therefore, there is a need for doing more scientific study exclusively for this. To achieve this goal, Metro Rail Stations influenced zone need to be defined which can be taken as approximately 5 kms for the motorized traffic and 1.5 km. for pedestrian/cyclists. Detailed Study is required to be done in this influenced zone of a Metro station for following aspects mainly:

- Availability and review of existing public and IPT facilities, in terms of motorized and non-motorised mode with main consideration of the streets/roads adjoining literally to the stations and also to examine adequacy of availability of pedestrians/cycle paths in the influenced zone.
- ii) Analysis and identification of gaps between supply and demand in terms of feeder facilities and other requirements for better first and last mile connectivity.

- iii) Proposal for introduction/enhancement of feeder buses and cycle/pedestrians tracks, bike sharing arrangement for each Metro station to be finalised.
- iv) Proposal for better integration of Metro station with other mode of transport, such as relocation of existing bus stop, introduction of new bus stop, bus base etc.
- v) Cost of the requirements namely road widening including roads for pedestrian/cycle paths, feeder buses based on the outcome of the study.

The detailed study and requirement for providing first mile as well as last mile connectivity to the Metro users will be carried out separately and the same should be in place before the commercial operation of the Metro services for the benefit of the users as well as for better ridership and the financial viability of the project.

Since, it is envisaged that detailed study for provision of feeder buses, public bike sharing and pedestrianisation in the influence zone of metro stations will be done and put in place by the time commercial operation of the Metro services, a lump-sum cost of @ 2% of Total Cost of all items except Land has been considered sufficient and included in the project cost of proposed Metro Rail System of Nagpur Metro. If at any stage more feeder services etc. will be required, same can be augmented by concerned City transportation authorities.

7/7

CHAPTER 18

COST ESTIMATES

- 18.1 INTRODUCTION
- 18.2 CAPITAL COST ESTIMATE
- 18.3 LAND
- 18.4 FORMATION, ALIGNMENT
- 18.5 STATION BUILDINGS
- 18.6 PERMANENT WAY
- 18.7 DEPOT
- 18.8 UTILITY DIVERSIONS
- 18.9 ENVIRONMENTAL IMPACT ASSESSMENT
- 18.10 REHABILITATION & RESETTLEMENT
- 18.11 TRACTION & POWER SUPPLY
- 18.12 ELECTRICAL SERVICES AT STATIONS
- 18.13 SIGNALLING & TELECOMMUNICATION WORKS
- 18.14 AUTOMATIC FARE COLLECTION
- 18.15 ROLLING STOCK
- 18.16 CAPITAL EXPENDITURE ON SECURITY
- 18.17 CAPITAL EXPENDITURE ON FEEDER BUSES
- 1818 TAXES AND DUTIES

TABLES

- TABLE 18.1CAPITAL COST ESTIMATE : NS CORRIDORTABLE 18.2CAPITAL COST ESTIMATE : EW CORRIDORTABLE 18.3DETAILS OF TAXES AND DUTIES: NS CORRIDOR
- TABLE 18.4 DETAILS OF TAXES AND DUTIES: EW CORRIDOR

CHAPTER - 18

COST ESTIMATES

18.1 INTRODUCTION

Detailed cost estimates for Nagpur Metro Rail Project has been prepared corridor wise covering civil, electrical, 1ignaling and telecommunications works, rolling stock, environmental protection, rehabilitation, etc. considering 25 kv ac Overhead Traction System at June 2012 price level.

While preparing the capital cost estimates, various items have generally been grouped under three major heads on the basis of (i) route km length of alignment, (ii) number of units of that item, and (iii) item being an independent entity. All items related with alignment, whether elevated or at-grade or underground construction, permanent way, traction, Signalling & telecommunication, whether in main lines or in maintenance depot, have been estimated at rate per route km basis. Cost of station structures, other electrical services at these stations including Lifts & Escalators and Automatic Fare Collection (AFC) installations at all stations have been estimated in terms of each station as a unit. Similarly Rolling stock costs have been estimated in terms of number of units required. In remaining items, viz. land, utility diversions, rehabilitation, etc. the costs have been assessed on the basis of each item, taken as an independent entity.

In order to arrive at realistic cost of various items, costs have been assessed on the basis of rates accepted for Delhi Metro. A suitable escalation factor has been applied to bring these costs to June 2012 price level The details of taxes and duties are worked out separately.

The capital cost has been worked out for Corridor-1: NORTH-SOUTH CORRIDOR (AUTOMOTIVE SQUARE TO KHAPRI) and Corridor-2: EAST-WEST CORRIDOR (LOKMANYA NAGAR TO PRAJAPATI NAGAR). One depot cum maintenance workshop on each corridor has been planned..

18.2 CAPITAL COST ESTIMATE

CORRIDOR - 1: NORTH-SOUTH CORRIDOR (AUTOMOTIVE SQUARE TO KHAPRI)

The capital cost estimates is shown at Table 18.1

Table 18.1

NAGPUR METRO				
Capital Cost Estimate				
				June 2012 price level
CORRIDOR - I NORTH-SOUTH CORRIDOR (AUTOMOTIVE SQUARE TO KHAPRI)				
Total length = 19.658 Km, Elv = 15.058 Km At Grade :4.600 Km				
Total Station = 17 nos, Elv = 15, At Grade:2				

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
				Witho	ut taxes
1.0	Land				
1.1	Permanent		5.00	50.000	054.40
a	Government	ha	5.00	50.220	251.10
b	Private	ha	35.52	3.800	134.98
1.2	Temporary	h a	1.20	20.000	04.00
а	Government	ha	1.20	20.000	24.00
	Private	ha			440.09
	Subtotal (1)				410.08
2.0	Alignment and Formation				
2.1	Underground section by T.B.M excluding station length (260m each)	R. Km.	110.00	0.000	0.00
2.2	Underground section by Cut & Cover excluding Station length (260m each) RAMP PORTION	R. Km.	100.00	0.000	0.00
2.3	Elevated section including station length	R. Km.	29.00	15.058	436.68
2.4	At Grade section including station length	R. Km.	2.90	4.600	13.34
2.5	Entry to depot	R. Km.	2.90	1.000	2.90
	Subtotal (2)				452.92
3.0	Station Buildings				
3.1	Underground Station (260 m length) incl. EM works, lifts, escalators, VAC etc.	Each			
а	Underground Station- Civil works	Each	100.00	0	0.00
b	Underground Station- EM works etc.	Each	55.45	0	0.00

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
3.2	Elevated stations (including finishes)	Each			
а	Type (A) way side- civil works	Each	17.00	10	170.00
b	Type (A) way side- EM works etc	Each	7.02	10	70.20
с	Type (B) Way side with signalling- civil works	Each	18.70	4	74.80
d	Type (B) Way side with signalling- EM works etc	Each	7.02	4	28.08
е	Type (C), Terminal station -civil works	Each	20.00	1	20.00
f	Type (c), Terminal station -EM works	Each	7.02	1	7.02
3.3	At grade Stations (including finishes)				
а	Type (A) way side- civil works	LS	13.600	2.000	27.20
b	Type (A) way side- EM works etc	LS	5.616	2.000	11.23
3.3	Metro Bhawan & OCC bldg.	LS			
а	Metro Bhawan & OCC bldgcivil works	LS			41.33
b	Metro Bhawan & OCC bldgEM works etc	LS			7.29
	Subtotal (3)				457.15
4.0	Depot	LS			
а	Civil works	LS			58.40
b	EM works etc	LS			87.60
	Subtotal (4)				146.00
5.0	P-Way				
5.1	Ballastless track for elevated & underground Section	R. Km.	6.48	15.058	97.58
5.2	Ballasted track for (a) at grade alignment and (b) in depot	R. Km.	2.31	10.600	24.48
	Subtotal (5)				122.06
6.0	Traction & power supply incl. OHE, ASS etc. Excl. lifts & Escalators				
6.1	UG Section	R.Km.	16.88	0.000	0.00
6.1	Elevated & at grade section	R.Km.	16.88	20.658	348.71
	Subtotal (6)				348.71
7.0	Signalling and Telecom.				
7.1	Sig. & Telecom.	R. Km.	14.09	20.658	291.07
7.2	Automatic fare collection	Stn.			
	At Grade Station	Each	5.00	2	10.00
	Elevated stations	Each	5.00	15	75.00
	Subtotal (7)				376.07
8.0	R & R incl. Hutments etc.	LS			60.00
	Subtotal (8)				60.00
9.0	Misc. Utilities, roadworks, other civil works such as median stn. signages Environmental protection	R. Km.			

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

3/12

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
а	Civil works+EM works	R. Km.	4.69	20.658	96.92
	Subtotal (9)				96.92
10.0	Rolling Stock	Each	8.50	33.000	280.50
	Subtotal (10)				280.50
11.0	Capital expenditure on security	LS			
а	Civil works	LS			6.00
b	EM works etc	LS			4.00
	Sub Total (11)				10.00
12.0	Capital expenditure on Feeder buses				
	Feeder Buses @ 2% of Total Cost of all items except Land	LS			47.01
13.0	Total of all items except Land				2350.33
	Total of all items except Land but including Feeder Buses				2397.34
14.0	General Charges incl. Design charges @ 5 % on all items except land				119.87
15.0	Total of all items including G. Charges except land				2517.21
16.0	Continegencies @ 3 %				75.52
17.0	Gross Total				2592.72
		Cost with	out land	=	2593
	Cost with land		=	3015	

e

CORRIDOR - II: EAST-WEST CORRIDOR (LOKMANYA NAGAR TO PRAJAPATI NAGAR)

The capital cost estimates is shown at Table 18.2

Table 18.2			
NAGPUR METRO			
Capital Cost Estimate			
			June 2012 price level
CORRIDOR - II EAST-WEST CORRIDOR (LOKMANYA NAGAR TO PRAJAPATI NAGAR)			
Total length = 18.557 Km, Elv = 18.557 Km			
Total Station = 19 nos, Elv = 19			

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
				Witho	ut taxes
1.0	Land				
1.0	Land				
1.1	Permanent	la a	E 00	27.400	407.00
a	Government	ha	5.00	27.460	137.30
b	Private	ha	35.52	1.490	52.92
1.2	Temporary		4.00		
а	Government	ha	1.20	20.000	24.00
	Private	ha			
	Subtotal (1)				214.22
2.0	Alignment and Formation				
2.1	Underground section by T.B.M excluding station length (260m each)	R. Km.	110.00	0.000	0.00
2.2	Underground section by Cut & Cover excluding Station length (260m each) RAMP PORTION	R. Km.	100.00	0.000	0.00
2.3	Elevated section including station length	R. Km.	29.00	18.557	538.15
2.4	At Grade section including station length	R. Km.	2.90	0.000	0.00
2.5	Entry to depot	R. Km.	2.90	1.000	2.90
	Subtotal (2)				541.05
3.0	Station Buildings				
3.1	Underground Station (260 m length) incl. EM works, lifts, escalators, VAC etc.	Each			
а	Underground Station- Civil works	Each	100.00	0	0.00
b	Underground Station- EM works etc.	Each	55.45	0	0.00

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
3.2	Elevated stations (including finishes)	Each			
а	Type (A) way side- civil works	Each	17.00	13	221.00
b	Type (A) way side- EM works etc	Each	7.02	13	91.26
с	Type (B) Way side with signalling- civil works	Each	18.70	4	74.80
d	Type (B) Way side with signalling- EM works etc	Each	7.02	4	28.08
е	Type (C), Terminal station -civil works	Each	20.00	2	40.00
f	Type (c), Terminal station -EM works	Each	7.02	2	14.04
3.3	At grade Stations (including finishes)				
а	Type (A) way side- civil works	LS	13.600	0.000	0.00
b	Type (A) way side- EM works etc	LS	5.616	0.000	0.00
3.3	Metro Bhawan & OCC bldg.	LS			
а	Metro Bhawan & OCC bldgcivil works	LS			41.33
b	Metro Bhawan & OCC bldgEM works etc	LS			7.29
	Subtotal (3)				517.80
4.0	Depot	LS			
а	Civil works	LS			58.40
b	EM works etc	LS			87.60
	Subtotal (4)				146.00
5.0	P-Way				
5.1	Ballastless track for elevated & underground Section	R. Km.	6.48	18.557	120.25
5.2	Ballasted track in depot	R. Km.	2.31	5.000	11.55
	Subtotal (5)				131.80
6.0	Traction & power supply incl. OHE, ASS etc. Excl. lifts & Escalators				
6.1	UG Section	R.Km.	16.88	0.000	0.00
6.1	Elevated & at grade section	R.Km.	16.88	19.557	330.12
	Subtotal (6)				330.12
7.0	Signalling and Telecom.				
7.1	Sig. & Telecom.	R. Km.	14.09	19.557	275.56
7.2	Automatic fare collection	Stn.			
	At Grade Station	Each	5.00	0	0.00
	Elevated stations	Each	5.00	19	95.00
	Subtotal (7)				370.56
8.0	R & R incl. Hutments etc.	LS			60.00
	Subtotal (8)				60.00
9.0	Misc. Utilities, roadworks, other civil works such as median stn. signages Environmental protection	R. Km.			

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

S. No.	Item	Unit	Rate	Qty.	Amount (Rs. in Cr.)
а	Civil works+EM works	R. Km.	4.69	19.557	91.76
	Subtotal (9)				91.76
10.0	Rolling Stock	Each	8.50	36.000	306.00
	Subtotal (10)				306.00
11.0	Capital expenditure on security	LS			
а	Civil works	LS			6.00
b	EM works etc	LS			4.00
	Sub Total (11)				10.00
12.0	Capital expenditure on Feeder buses				
	Feeder Buses @ 2% of Total Cost of all items except Land	LS			50.10
13.0	Total of all items except Land				2505.09
	Total of all items except Land but including Feeder Buses				2555.19
14.0	General Charges incl. Design charges @ 5 % on all items except land				127.76
15.0	Total of all items including G. Charges except land				2682.95
16.0	Continegencies @ 3 %				80.49
17.0	Gross Total				2763.44
		Cost with	out land	=	2763
		Cost v	vith land	=	2984

₽

18.3 LAND

- i) Land requirements have been kept to the barest minimum & worked out on area basis. For underground and elevated alignment, no land is proposed to be acquired permanently, except small areas for locating entry/exit structures, traffic integration, etc. at stations, and wherever the alignment is off the road.
- ii) To workout cost of land its rates have been assumed as Rs. 5.00 Crore per hectare for government land and rates for private land have been taken as Rs. 35.52 Crore per hectare.
- iii) Land required for Property Development for funding the project after its commercial exploitation has not been taken in to account while working out project cost.

18.4 FORMATION, ALIGNMENT

i) Elevated Section: The basis of rate is as accepted for Delhi Metro dully escalated to June 2012 price level.

18.5 STATION BUILDINGS

- i) Underground Stations: The basis of rate is as accepted for Delhi Metro dully escalated to June 2012 price level. The work cover U.G. alignment, as well as, other civil electrical works like ventilation, air-conditioning, lifts & escalators, but does not cover P-way, O.H.E, signaling and interlocking works, AFC installations.
- **ii) Elevated Stations:** Rates are based on accepted rates of Delhi metro, duly updated to June 2012 price level. The cost includes the general services at the stations but excludes the cost of viaduct, lifts & escalators, which have been considered separately under, respective items. One station is planned at double height. The extra cost on double height account to be charged to contingency.

18.6 PERMANENT WAY

For elevated and underground sections, ballast-less track and for at-grade section and Depot ballasted track has been planned. Rates are based on accepted rates of Delhi Metro, duly updated to June 2012 price level.

18.7 DEPOT

One Car Maintenance Depot-cum-Workshop serving both the corridors have been proposed at KHAPRI (for NS Corridor) and at Subhash Nagar (for EW Corridor). The depot is planned at ground level. Costs have been worked out for various items of building, elevated structures, tracks, boundary wall & plants machinery etc.

18.8 UTILITY DIVERSIONS

The costs of utility diversions involved in the stretch have been considered separately and provided for in the estimate. In addition to sewer/drainage/water pipelines other important utilities works considered are road diversions, road restoration etc. Cost provision has been made on route km basis based on experience of Delhi Metro.

18.9 ENVIRONMENTAL IMPACT ASSESSMENT

Provision for environmental impacts of the proposed two Corridors has been made to cover various protection works, additional compensatory measures, and compensation for loss of trees, compensatory afforestation and fencing, monitoring of water quality, air/noise pollution during construction, establishment of Environmental Division.

18.10 REHABILITATION & RESETTLEMENT

Provision towards compensation/rehabilitation of structure likely to be affected has been assessed. Sufficient provision is kept in the estimate to cover the cost of shifting of structures.

18.11 TRACTION & POWER SUPPLY

Provisions have been made to cover following subheads:

- OHE
- Receiving-cum-Traction Sub-stations including cables.
- ASS for elevated and at-grade stations.
- Service connection charges for Receiving Sub-stations.
- SCADA augmentation.
- Miscellaneous items e.g. illumination, lifting T&P, etc.

The rates adopted for various items are based on costs of works being done for Delhi Metro, duly updated to June 2012 level.

18.12 ELECTRICAL SERVICES AT STATIONS

These are included in estimated costs of stations. Cost of escalators for elevated stations have not been included in station costs, and therefore, are provided under electrical estimates & shown separately.

18.13 SIGNALLING & TELECOMMUNICATION WORKS

The rates adopted are based on assessment done considering rates of similar subsystem as accepted for Delhi Metro, duly updated to June 2012 price level and TPWS works. These rates include escalation during manufacture & supply of equipment and their installation at site, but exclude CD and WT.

18.14 AUTOMATIC FARE COLLECTION

Adopted rates are based on assessment done considering rates of similar works in Delhi Metro /other metro projects, duly updated to June 2012 price level. These rates exclude

CD & WT, but include escalation during the period of equipment manufacture and their supply, including installation.

18.15 ROLLING STOCK

The estimated cost per coach at June 2012 price level exclusive of taxes and duties has been taken as Rs. 8.5 Crores per coach.

18.16 CAPITAL EXPENDITURE ON SECURITY

A lump-sum cost of 10 crore has been considered for this purpose.

18.17 CAPITAL EXPENDITURE ON FEEDER BUSES

A lump-sum cost of Feeder Buses @ 2% of Total Cost of all items except Land has been considered.

18.18 TAXES AND DUTIES

The component of Import Duty, Excise Duty and VAT is not included in the Capital cost estimated. The estimated taxes and duties for various corridors are given in the following tables.

Details of Taxes and duties for Corridor-I and Corridor-II are provided in table 18.3 and 18.4 respectively.

		•				
	Details of Taxes	and Duties (N				
	Customs duty =	22.8531	%			
	Excise duty =	12.36	%			
	Sale tax =	6.25	%			
	Works tax =	6.25	%			
	VAT =	12.5	%			
			Tax	es and d	uties	Total
S. No.	Description	Total cost without Taxes & duties (Cr.)	custom duty (Cr.)	excise duty (Cr.)	VAT(Cr.)	taxes & duties (Cr.)
1	Alignment & Formation					
	Underground	0.00	0.00	0.00	0.00	0.00
	Elevated, at grade & entry to Depot	452.92		39.19	22.26	61.45
2	Station Buildings					
	a) Underground station-civil works	0.00	0.00	0.00	0.00	0.00
	b) Underground station-EM works	0.00	0.00	0.00	0.00	0.00
	Elevated station - civil works	292.00		25.26	14.35	39.62
	Elevated station-EM works	116.53	5.33	9.79	5.56	20.69
	e) Metro bhawan & OCC bldg-civil works	41.33		3.58	2.03	5.61
	f) Metro bhawan & OCC bldg-EM works	7.29	0.33	0.61	0.35	1.29
3	Depot					
	Civil works	58.40	4.00	3.54	2.01	9.55
	EM works	87.60	4.00	7.36	4.18	15.55
4	P-Way	122.06	22.31	2.56	1.46	26.34
5	Traction & power supply					
	Traction and power supply	348.71	31.88	21.98	12.49	66.35
6	S &T Works					
	S&T	291.07	53.22	7.20	4.09	64.50
	AFC	85.00	14.57	2.63	1.49	18.69
7	R & R hutments	60.00			3.75	3.75
8	Misc.					
	Civil works	72.69		6.29	3.57	9.86
	EM works	24.23		2.55	1.45	3.99
9	Rolling stock	280.50	56.41	2.70	1.54	60.65
10	Security					
	Civil works	6.00		0.52	0.38	0.90
	EM works	4.00		0.49	0.36	0.85
11	Feeder Buses	47.01		5.81	4.23	10.04
	Total	2397.34	192.05	142.06		419.67
	Total taxes & Duties					420

TABLE 18.3 Details of Taxes and Duties (NS CORRIDOR)

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

NOV 2013

11/12

	Details of Taxes and	•				
				,		
	Customs duty =	22.8531	%			
	Excise duty =	12.36	%			
	Sale tax =	6.25	%			
	Works tax =	6.25	%			
	VOIKS tax =	0.25 12.5	⁷⁰			
	VAI =	12.5		es and d	utios	Tatal
S. No.	Description	Total cost without Taxes & duties (Cr.)	custom duty (Cr.)	excise duty (Cr.)	VAT(Cr.)	Total taxes & duties (Cr.)
1	Alignment & Formation					
	Underground	0.00	0.00	0.00	0.00	0.00
	Elevated, at grade & entry to Depot	541.05		46.81	26.60	73.41
2	Station Buildings					
	a) Underground station-civil works	0.00	0.00	0.00	0.00	0.00
	b) Underground station-EM works	0.00	0.00	0.00	0.00	0.00
	Elevated station - civil works	335.80		29.05	16.51	45.56
	Elevated station-EM works	133.38	6.10	11.21	6.37	23.68
	e) Metro bhawan & OCC bldg-civil works	41.33		3.58	2.03	5.61
	f) Metro bhawan & OCC bldg-EM works	7.29	0.33	0.61	0.35	1.29
3	Depot					
	Civil works	58.40	4.00	3.54	2.01	9.55
	EM works	87.60	4.00	7.36	4.18	15.55
4	P-Way	131.80	24.10	2.77	1.57	28.44
5	Traction & power supply					
	Traction and power supply	330.12	30.18	20.81	11.82	62.81
6	S &T Works					
	S&T	275.56	50.38	6.81	3.87	61.06
_	AFC	95.00	16.28	2.94	1.67	20.89
7	R & R hutments	60.00			3.75	3.75
8	Misc.	00.00		E 05	0.00	0.24
	Civil works	68.82		5.95	3.38	9.34
9	EM works Rolling stock	22.94	61 54	2.41	1.37	3.78
9 10	Security	306.00	61.54	2.95	1.68	66.17
10	Civil works	6.00		0.52	0.38	0.90
	EM works	4.00		0.52	0.36	0.90
11	Feeder Buses	50.10		6.19	4.50	10.70
	Total	2555.19	196.91	154.01	4.50	443.32
		2000.19	130131	104.01		440.02
	Total taxes & Duties					443

TABLE 18.4 Details of Taxes and Duties (EW CORRIDOR)

12/12

CHAPTER 19

FINANCING OPETIONS, FARE STRUCTURE AND FINANCIAL VIABILITY

- 19.1 INTRODUCTION
- 19.2 COSTS
- 19.3 REVENUES
- **19.4 FINANCIAL INTERNAL RATE OF RETURN (FIRR)**
- **19.5 FINANCING OPTIONS**
- 19.6 RECOMMENDATIONS

TABLES

TABLE 19.1	COST DETAILS
TABLE 19.2	YEAR –WISE INVESTMENT
TABLE 19.3	ADDITIONAL INVESTMENT TOWARDS ROLLING STOCK
TABLE 19.4	OPERATION AND MAINTENANCE COSTS
TABLE 19.5	PROJECTED RIDERSHIP
TABLE 19.6	TRIP DISTRIBUTION
TABLE 19.7	FARE STRUCTURE IN 2018-19
TABLE 19.8	INCOME ASSUMED FROM ADDITIONAL TAXES
TABLE 19.9	FIRR: (COST WITH CENTRAL TAXES)
TABLE 19.10	FIRR SENSITIVITY
TABLE 19.11	FUNDING PATTERN UNDER SPV MODEL (WITH TAXES & DUTIES)
TABLE 19.12	FUNDING PATTERN UNDER BOT MODEL (WITH CENTRAL TAXES)
TABLE 19.13	FUND CONTRIBUTION OF GOI & GOM

FIGURES

FIG 19.1	TRIP DISTRIBUTION
FIG 19.2	FUNDING PATTERN: - SPV MODEL

Do in Croro

CHAPTER 19

FINANCING OPTIONS, FARE STRUCTURE AND FINANCIAL VIABILITY

19.1 INTRODUCTION

The Nagpur Metro consisting of two corridors are proposed to be constructed with an estimated cost of Rs 6862.00 Crore with Central Taxes, State Taxes and land cost. The corridor-wise length estimated cost at June-2012 price level without taxes and with all taxes is placed in **Table 19.1** as under:

Corridor No	Name of Corridor	Distance (KMs)	Estimated Cost without Central taxes at June- 2012 Price Level	Estimated Cost with all taxes at June-2012 Price Level
I	North-South Corridor	19.658	3015.00	3,435.00
II	East-West Corridor	18.557	2984.00	3,427.00
	Total	38.215	5999.00	6862.00

Table 19.1 Cost Details

The estimated cost at June-2012 price level includes Rs. 410.00 Crore and Rs.214.00 Crore as land cost respectively for Corridor I and II. The estimated cost at June-2012 price level also includes an amount of Rs.20 Crore as one-time charges of security personal towards cost of weapons, barricades, and hand held and door detector machine etc. However, the recurring cost towards salary and allowances of security personal have not taken in to account in FIRR calculation with an assumption that the required police personnel will be provided free of cost by the state government since it is as state subject.

19.2 COSTS

19.2.1 Investment Cost

For the purpose of calculating the Financial Internal Rate of Return (FIRR), the completion costs with central taxes & state taxes have been taken with an escalation factor @7.50% PA.

The construction work is expected to get completed by 31.03.2018. The Revenue Opening Date (ROD) has been assumed as 01.04.2018. The total completion costs duly escalated and shown in the table 19.2 have been taken as the initial investment. The year-wise cash outgo is shown in **Table 19.2** as below.

		Rs. in Crore
Financial Year	Cost at June 2012 Price Level	Completion Cost
2013-14	447.00	452.00
2014-15	944.00	1021.00
2015-16	1555.00	1874.00
2016-17	1865.00	2412.00
2017-18	1430.00	1983.00
2018-19	497.00	740.00
2019-20	124.00	198.00
Total	6862.00	8680.00

Table 19.2Year –wise Investment

Although the construction is expected to get over by 31st March 2018, the cash flow spill over up to March 2020 is necessary on account of payment normally required to be made to the various contractors up to that period necessitated by contractual clauses.

The land cost is divided into two initial years during which it is expected that the land acquisition work would be over and related payments would have to be released. Therefore, no escalation has been considered on it.

19.2.2 Additional Investment

Total investment provided in the FIRR calculation towards requirement of additional rolling stock to take care of incremental traffic, duly escalated @5% PA is placed in **Table 19.3** as under: -

Year	No. of Cars	Amount with Taxes
2021-22	15	241.00
2026-27	9	184.00
2031-32	6	157.00
2036-37	12	400.00
2041-42	12	511.00

Additional Investment towards Rolling Stock Rs. in Crore

19.2.3 Operation & Maintenance (O&M) Costs

The Operation & Maintenance costs can be divided into three major parts: -

- (i) Staff costs
- (ii) Maintenance cost which include expenditure towards upkeep and maintenance of the system and consumables
- (iii) Energy costs

The staffs are assumed to be provided @ 35 persons per kilometre. The escalation factor used for staff costs is 9% per annum to provide for both escalation and growth in salaries.

The cost of other expenses is based on the actual O & M unit cost for the Delhi Metro Phase-II project. The average rate of electricity being paid by Delhi Metro for its Phase-I and Phase-II operations in Delhi is Rs. 5.80 per unit whereas in Nagpur the applicable rate is Rs. 5.00 per unit. The latter has been used for all calculations. The O&M cost (excluding staff cost) has been obtained by providing an escalation of 7.50% per annum. The O&M costs which has been calculated on life cycle cost basis is tabulated in Table 19.4 as below:-

						RS. III CIUIE
YE	YEAR		Staff	Maintenance Expenses	Energy	Total
2018	-	2019	75.26	48.92	37.98	162.00
2019	-	2020	82.03	52.58	40.83	175.00
2020	-	2021	89.42	56.53	43.89	190.00
2021	-	2022	97.46	60.77	48.58	207.00
2022	-	2023	106.24	65.32	52.22	224.00
2023	-	2024	115.80	70.22	56.14	242.00
2024	-	2025	126.22	75.49	60.35	262.00
2025	-	2026	137.58	81.15	64.87	284.00
2026	-	2027	149.96	87.24	83.68	321.00
2027	-	2028	163.46	93.78	89.96	347.00
2028	-	2029	178.17	100.82	96.71	376.00
2029	-	2030	194.20	108.38	103.96	407.00
2030	-	2031	211.68	116.51	111.76	440.00
2031	-	2032	230.73	125.24	125.48	481.00
2032	-	2033	251.50	134.64	134.89	521.00

Table 19.4Operation and Maintenance Costs

3/13

Rs In Crore

YE	YEAR		Staff	Maintenance Expenses	Energy	Total
2033	-	2034	274.13	144.73	145.01	564.00
2034	-	2035	298.81	155.59	155.88	610.00
2035	-	2036	325.70	167.26	167.57	661.00
2036	-	2037	355.01	179.80	199.99	735.00
2037	-	2038	386.96	193.29	214.99	795.00
2038	-	2039	421.79	207.78	231.11	861.00
2039	-	2040	459.75	223.37	248.45	932.00
2040	-	2041	501.13	240.12	267.08	1008.00
2041	-	2042	546.23	258.13	328.34	1133.00
2042	-	2043	595.39	277.49	352.96	1226.00
2043	-	2044	648.97	298.30	379.44	1327.00

19.2.4 Depreciation

Although depreciation does not enter the FIRR calculation (not being a cash outflow) unless a specific depreciation reserve fund has been provided, in the present calculation, depreciation calculations are placed for purpose of record.

19.2.5 Replacement Cost

The replacement costs are provided for meeting the cost on account of replacement of equipment due to wear and tear. With the nature of equipment proposed to be provided, it is expected that only 50% of the Signalling and Telecom and 25% of electrical works would require replacement after 20 years. Further, 50% of the Signalling and Telecom and 25% of electrical works would require replacement after 30 years. These costs have been provided duly escalated @ 5% per annum.

19.3 REVENUES

The Revenue of Nagpur metro mainly consists of fare box collection and other incomes from property development, advertisement, parking etc.

19.3.1 Fare box

The Fare box collection is the product of projected ridership per day and applicable fare structure based on assumed trip distribution at different distance zones.

19.3.2 Traffic

The year-wise projected ridership figures are as indicated in Table 19.5 as below: -

Table 19.5 Projected Ridership					
Year Corridor-1 & 2 Trips Per Day (lakhs)					
2018-19	3.67				
2021-22	3.83				
2026-27	4.19				

4/13

Year	Corridor-1 & 2 Trips Per Day (lakhs)
2031-32	4.59
2036-37	5.09
2041-42	5.64

b. The growth rate for traffic is assumed at 2.10% Per Annum.

19.3.3 Trip Distribution

The trip distribution has been worked out by considering average lead of 6.28 KM, which is placed in **Table 19.6** below: -

Percent distribution					
15.00%					
20.00%					
20.50%					
26.50%					
7.00%					
5.00%					
3.00%					
2.00%					
1.00%					
100.00%					

Table 19.6 Trip Distribution

The graphic presentation of the same is placed below in **Figure-19.1**.

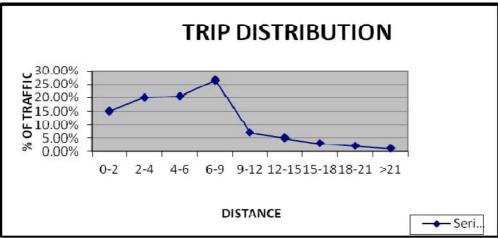


Figure 19.1 – Trip Distribution

19.3.4 Fare Structure

The Delhi Metro Fares structures fixed by fare fixation committee in 2009 have been assumed, which have been duly escalated @15% for every two years to arrive at the initial fare structure for Nagpur Metro, which is placed in Table 19.7.

	Fare Structure in 2018-19							
Distance in Kms	DMRC Fare as Revised in 2009	Nagpur Metro Fare (Rs.) in 2018-19						
0-2	8	15						
2-4	10	19						
4-6	12	23						
6-9	15	28						
9-12	16	30						
12-15	18	34						
15-18	19	36						
18-21	21	39						
>21	22	41						

Та	ble 1	9.7	7	
re Struc	ture	in	201	8-′

19.3.5 Other sources of revenues

19.3.5.1 Property Business- Other revenues from Property business i.e. advertisement, Kiosk, ATM etc. have been estimated at 10% of the fare box revenues during operations. Apart from development of property on metro stations and depot it is possible to raise resources through leasing of parking rights at stations, advertisement on trains and tickets, advertisements within stations and parking lots, advertisements on viaducts, columns and other metro structures, co-branding rights to corporate, film shootings and special events on metro premises.

19.3.5.2 Additional Taxes- Income assumed from additional taxes i.e. FSI, Additional Stamp Duty, Development Fund as proposed by Nagpur Improvement Trust vide letter dated 25.09.2013 is placed at Table no. 19.8. The amount of taxes as provided by Nagpur Improvement Trust has been considered from 2018-19 for FIRR calculations:-

Table 19.8 : Income assumed from additional taxes

Rs. In Crore

	Year		FSI	Additional Stamp Duty@1%	Development Fund Revenue	Total
2016	-	2017	-	85.00	5.00	90.00
2017	-	2018	-	94.00	5.00	99.00
2018	-	2019	103.00	103.00	5.00	211.00
2019	-	2020	460.00	113.00	5.00	578.00
2020	-	2021	638.00	125.00	5.00	768.00
2021	-	2022	850.00	137.00	5.00	992.00
2022	-	2023	734.00	151.00	5.00	890.00
2023	-	2024	931.00	166.00	5.00	1,102.00

6/13

	Total		10674.00	10315.00	135.00	21124.00
2042	-	2043	-	1,015.00	5.00	1,020.00
2041	-	2042	-	923.00	5.00	928.00
2040	-	2041	_	839.00	5.00	844.00
2039	-	2040	-	763.00	5.00	768.00
2038	-	2039	-	693.00	5.00	698.00
2037	-	2038	-	630.00	5.00	635.00
2036	-	2037	-	573.00	5.00	578.00
2035	-	2036	-	521.00	5.00	526.00
2034	-	2035	-	474.00	5.00	479.00
2033	-	2034	-	431.00	5.00	436.00
2032	-	2033	1,015.00	391.00	5.00	1,411.00
2031	-	2032	860.00	356.00	5.00	1,221.00
2030	-	2031	726.00	323.00	5.00	1,054.00
2029	-	2030	610.00	294.00	5.00	909.00
2028	-	2029	511.00	267.00	5.00	783.00
2027	-	2028	1,061.00	243.00	5.00	1,309.00
2026	-	2027	876.00	221.00	5.00	1,102.00
2025	-	2026	717.00	201.00	5.00	923.00
2024	-	2025	582.00	183.00	5.00	770.00

19.4 FINANCIAL INTERNAL RATE OF RETURN (FIRR)

The Financial Internal Rate of Return (FIRR) and costs for 30 years business model including construction period is 10.35%. The FIRR with all taxes is produced in **Table 19.9**

Table 19.9 FIRR (with all taxes)

Year			Comple tion Cost	Additio nal Cost	Runnin g Expens es	Replac ement costs	Total Costs	Fare Box Revenu e	PD & ADVT	Revenu e from Additio nal Taxes	Total Revenu e	Net Cash flow for IRR
2013	-	2014	452				452				0	-452
2014	-	2015	1021				1021				0	-1021
2015	-	2016	1874				1874				0	-1874
2016	-	2017	2412				2412				0	-2412
2017	-	2018	1983				1983				0	-1983
2018	-	2019	740		162		902	303	30	211	544	-358
2019	-	2020	198		175		373	309	31	578	918	545
2020	-	2021	0		190		190	362	36	768	1166	976
2021	-	2022	0	241	207		448	362	36	992	1390	942
2022	-	2023	0	0	224		224	426	43	890	1359	1135
2023	-	2024	0	0	242		242	434	43	1102	1579	1337
2024	-	2025	0	0	262		262	514	51	770	1335	1073
2025	-	2026	0	0	284		284	525	53	923	1501	1217

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT NOV 2013

7/13

Rs. In Crore

	Year			Additio nal Cost	Runnin g Expens es	Replac ement costs	Total Costs	Fare Box Revenu e	PD & ADVT	Revenu e from Additio nal Taxes	Total Revenu e	Net Cash flow for IRR
2026	-	2027	0	184	321		505	604	60	1102	1766	1261
2027	-	2028	0	0	347		347	617	62	1309	1988	1641
2028	-	2029	0	0	376		376	723	72	783	1578	1202
2029	-	2030	0	0	407		407	738	74	909	1721	1314
2030	-	2031	0	0	440		440	866	87	1054	2007	1567
2031	-	2032	0	157	481		638	872	87	1221	2180	1542
2032	-	2033	0	0	521		521	1028	103	1411	2542	2021
2033	-	2034	0	0	564		564	1049	105	436	1590	1026
2034	-	2035	0	0	610		610	1233	123	479	1835	1225
2035	-	2036	0	0	661		661	1258	126	526	1910	1249
2036	-	2037	0	400	735		1135	1480	148	578	2206	1071
2037	-	2038	0	0	795		795	1511	151	635	2297	1502
2038	-	2039	0	0	861		861	1774	177	698	2649	1788
2039	-	2040	0	0	932	1702	2634	1811	181	768	2760	126
2040	-	2041	0	0	1008	1363	2371	2128	213	844	3185	814
2041	-	2042	0	511	1133	0	1644	2170	217	928	3315	1671
2042	-	2043	0	0	1226	0	1226	2552	255	1020	3827	2601
	Total		8680	1493	13164	3065	26402	25649	2564	20935	49148	<mark>10.35%</mark>

The various sensitivities with regard to increase/decrease in capital costs, O&M costs and revenues are placed in **Table 19.10** below :-

Table 19.10 FIRR Sensitivity

CAPITAL COSTS with all Taxes								
10% increase in	20% increase	10% decrease	20%					
capital cost	in capital cost	in capital cost	decrease in					
			capital cost					
9.44%	9.44% 8.63%		12.59%					
REVENUE								
20% decrease in	10% decrease	10% increase	20%					
Traffic revenue	Traffic revenue Traffic in		increase in					
	revenue	revenue	Traffic					
			revenue					
8.93%	9.67%	10.99%	11.58%					
O&M COSTS								
10% increase in	n O&M cost	10% decrease ir	n O&M cost					

These sensitivities have been carried out independently for each factor.

19.5 FINANCING OPTIONS

19.5.1 Objectives of Funding

The objective of funding metro systems is not necessarily enabling the availability of funds for construction but coupled with the objective of financial closure are other concerns, which are of no less importance: -

- a. Ensuring low project cost
- b. Ensuring debt funds at low rates of interest
- c. Creating self sustainable system in the long run by
 - Low infrastructure maintenance costs
 - Longer life span
 - Setting fares which minimise dependence on subsidies
- d. Recovering returns from both direct and indirect beneficiaries

Rail based mass transit systems are characterised by heavy capital investments coupled with long gestation period leading to low financial rates of return although the economic benefits to the society are immense. Such systems generate externalities, which do not get captured in monetary terms and, therefore, do not flow back to the system. However, experience all over the world reveals that both construction and operations of metro are highly subsidised. Government involvement in the funding of metro systems is a foregone conclusion. Singapore had a 100% capital contribution from the government, Hong Kong 78% for the first three lines and 66% for the later 2 lines. In India also, GOI & concerned state government have contributed entire equity capital and equally provided interest free subordinate debts for land and central taxes along with ODA loan from JICA for Delhi, Chennai, and Bangalore metro's.

19.5.2 Alternative Models Of Financing

The financing option shall depend upon selection of the dedicated agency created to implement the project. The prominent models are: -

- (i) Special Purpose Vehicle under the State Control (Delhi Metro Rail Corporation (DMRC) /Bangalore Metro Rail Corporation (BMRC) model)
- (ii) Public-Private Partnership (PPP) mode
 - Built Operate and Transfer (BOT) model
 - Other PPP Model

19.5.3 DMRC/BMRC/CMRL pattern of Financing

A Special Purpose Vehicle (SPV) is set up for the implementation of the project and for its subsequent Operation & Maintenance. Under this arrangement Government of India and Government of Maharashtra shall make equal equity contribution and run the SPV as a commercial enterprise as a joint venture of GOI & GOM. As per the prevalent practice, Central Government may be willing to contribute 15% to 20% of the project cost as their equity contribution. An equal amount can be contributed by Government of Maharashtra aggregating the total equity to 40%. With the equal ownership of the SPV, both the governments nominate their representatives as

members of the Board of Directors, which in turn select functional directors. Such a SPV has a benefit of independent management under the aegis of Indian Companies Act, 1956. Delhi Metro Rail Corporation, Chennai & Bangalore metro corporations are shining example of success of such SPV. For the balance 60% funding requirement, options available are as follows: -

- (i) Subordinate Debt: For Delhi Metro, land and rehabilitation and resettlement cost have been borne by GOI & GNCTD equally as interest free subordinate debt. Now, MOUD have changed the policy under which the cost of land for Bangalore Metro was borne by Government of Karnataka as interest free subordinate debt. Similarly, the cost of Land including rehabilitation and resettlement cost amounting to Rs.644.00 Crore may be contributed as interest free subordinate debt by GOM. This mezzanine financing is of extreme help in quickening the pace of land acquisition, since the compensation amount is released to evacuate instantaneously. The loan is of longer duration and becomes repayable only after other long term loans raised for the project is repaid.
- (ii) **Debt:** The balance cost is to be met through loans from various institutions namely JICA, Local borrowing, loans from ADB/World Bank and Suppliers Credit.

JICA Loan: -Overseas Development assistance from Japan International Cooperation Agency (JICA) may be availed of for metro rail projects with interest @ 1.40%PA lend it to the SPV on back to back basis. The loan is repayable in 30 years including moratorium period of 10 years. The loan is being provided by JICA to GOI which in turn releases the same to SPV under a Pass Through Assistance (PTA) mechanism. Normally, JICA funds for underground civil works, Electrical, Signalling &Telecom and Rolling Stock only. Since the loan will be in Japanese Yen, fluctuation in exchange rate at the time of repayment shall be borne by the Central Government and Government of Maharashtra in proportion to which their share holding. Alternatively, JICA can release the loan to the SPV for which a sovereign guarantee will be required from Central Government. Foreign exchange variation in such eventuality will be borne either by the SPV or GOM. In either case loan shall be repaid by SPV from the income streams of metro operations.

Loan from Asian Development Bank (ADB)/World Bank: - The Loan shall be available from ADB/World Bank, but as per the experience its processing and approval normally takes 8-12 months. The interest rate is linked with periodically LIBOR. These bilateral funding institutions also charge some margin ranging from 200 basis points to 300 basis points. This may delay the implementation of the project resulting in avoidable increase in the completion cost. Recently, Bangalore Metro availed ADB loan.

Loan from Bank and Financial Institutions: - Funds can be arranged from domestic Financial Institutions like India Infrastructure Finance Company Limited (IIFCL), India Development Financing Corporation (IDFC), Life Insurance Corporation of India (LIC), IDBI Bank, ICICI Bank Ltd etc. These institutions are increasingly engaged to fund infrastructure projects subject to their commercial viability against guarantee from GOI. There are many models available under which the funds can be arranged by these financial institutions with or without syndicating with other commercial banks. IIFCL e.g. fund 20% of the project cost and arrange balance through the syndication of commercial banks with a lead banker among the consortium of bankers. The loan can be given for a period of 20-30 years with interest rate ranging from 9.50% to 12% PA. IIFCL can also provide 100% funding against GOI guarantee. They arrange ECB to the extent of foreign currency requirement at very competitive rate. The funding arrangement may require the central government guarantee as well. Since the rate of interest of these financial institutions is much higher than the interest rates of soft loan provided by JICA, GOI and GOM shall have to bear the interest difference and provide suitable subsidy to the SPV to make the project financially sustainable.

Suppliers Credit: - Suppliers Credit is an established method to secure funding of imports. It is backed by EXIM banks of exporting countries and is often a much better instrument than bilateral aid. While bilateral aid ties the borrowing entity, Suppliers Credit can be used intelligently and effectively to spur competition in competitive international tendering method. In case of Rolling Stock, where market is truly competitive (unlike S&T) an attractive rate of interest for suppliers credit is possible. However, the supplier will load the amount of interest in the cost of supply due to which the effective completion cost will be very high.

The funding pattern assumed under government owned SPV model is placed in **Table 19.11** as under:-

	With Taxes	s & Duties
Particulars	Amount (Rs/Crore)	% of contribution
Equity by GOI	1114.00	12.83%
Equity by GOM	1114.00	12.83%
SD by GOM to central Taxes (50%)	441.00	5.08%
SD by GOI for Central Taxes (50%)	441.00	5.08%
SD by GOM for State Taxes	259.00	2.98%
SD by GOM for Land	644.00	7.42%
Nagpur Improvement Trust Contribution	421.00	4.85%
Nagpur Municipal Corporation Contribution	421.00	4.85%
JICA Loan @ 1.40% PA/Market Borrowing		
@12%	3825.00	44.08%
Total	8680.00	100.00%

Table 19.11Funding pattern under SPV model (with All Taxes & Duties)

NOV 2013

19.5.4 Public Private Partnership Mode

Public Private Partnership (PPP) arrangements are steadily growing in use particularly in road, power, and telecom sectors which are more of commercial nature rather than in a social sector project. PPP models are arrayed across a spectrum ranging from BOT where the private sectors have total involvement to other tailor made models where both public and private sector assume separate responsibilities. A few alternatives which can be selected in this regard are: -

BOT Model: - In this model, the private firm will be responsible for financing, designing, building, operating and maintaining of the entire project. The contribution of Government of Maharashtra will be limited to cost of land only. Such a project become eligible for Viability Gap Funding (VGF) upto 20% from the Central Government provided the state government also contribute same amount towards the project. The metro being a social sector project may not attract much private parties. Besides quite expectedly the private operator may demand assured rate of return in the range of 16% to 18% (Equity IRR) or a comfort of guaranteed ridership etc.

The funding pattern assumed under this model to ensure 16% as EIRR is placed in **Table 19.12** tabulated as under: -

Particulars	Amount (Rs/Crore)	% of contribution
VGF by GOI	1555.40	20.00%
VGF by GOM	524.60	6.75%
Equity by Concessionaire	1899.00	24.42%
Concessionaire's debt @12% PA	3798.00	48.83%
Total	7777.00	100.00%
Land Free by GOM	644.00	
State Taxes by GOM	259.00	
IDC	445.00	
Total including IDC	9125.00	

Table 19.12 Funding pattern under BOT model (with all taxes)

19.6. RECOMMENDATIONS

The FIRR of subject metro with all taxes is 10.35%, and therefore the corridors are recommended for implementation.

The total fund contribution of GOI & GOM under various alternatives is tabulated in table 19.13

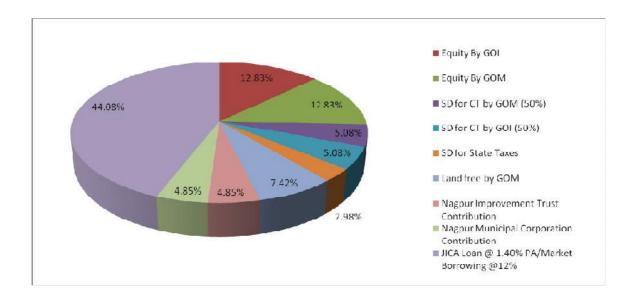

		Rs. In crore
Contributor	SPV Model	BOT
Government of India	1555.00	1555.40
Government of Maharashtra	2458.00	1427.60
Total	3754.00	2983.00

Table 19.13

Considering the fact that the innovative financing from additional FAR, Stamp Duty, development fund revenue provided by Nagpur Improvement Trust shall due only to the government instrumentalities and not to the private operator, it is recommended to implement the project under SPV model as per the funding pattern given in Table 19.11.

The details showing cash flow under JICA Loan, Market Borrowing, BOT model to ensure 16% EIRR when the project cost is with all taxes are shown respectively in table 19.14, 19.15& 19.16.

The funding pattern assumed under SPV model is depicted in the pie chart i.e., Figure 19.2 as under: -

Figure 19.2 Funding Pattern: - SPV Model

13/13

NAGPUR METR	O PROJECT							1											1				Table 19.15
CAPITAL COST-	FIXED		6684															12.00%	6				
CAPITAL COST			8680																-				
DOMESTIC FUN		ASE																					
	Completion	Additional	Running	Depreciation	Replaceme	Total Cost	Fare box	PD &	Revenue	Total	Net Cash	Equity from GOI	Availability	Cumulative	Cum. Loan	Loan	Repayment	IDC	Cumulative	Interest	Profit	Cash	Cumulative
Veer	Cost	Capital	Expenses	•	nt Cost		Revenue	Advertisem	from	Revenue	Flow for IRR	& GOM & Cont.	of cash	cash			of Loan		loan incl.		before Tax	Balance	Cash
Year		-						ent	Additional			By NIT /NMC							IDC				1 1
									Taxes			-											1 1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
2013 - 2014	452					452				C	-452	979	527	527	0	0	0	(0 0				
2014 - 2015	1021					1021				C	-1021	1287	266	793	0	0	0	(0 0				
2015 - 2016	1874					1874				C	-1874	964	-910	-117	117	117	0	7	7 124				
2016 - 2017	2412					2412				C	-2412	962	-1450	-1567	1567	1450	0	101	I 1675				
2017 - 2018	1983					1983				C	-1983	663		-2887	2887	1320	0	267	3262				
2018 - 2019			162	272		902	303	30	211	544	-358	0	-740		3627	740	0	(4002	391	-281	-9	-9
2019 - 2020	198		175	272		373	309	31	578	918	3 545		-198	-3825	3825	198	0	(4200	480	-9	263	253
2020 - 2021			190	272		190	362	36	768	1166	976		0	0	0	0	420	(3780	504	200	52	305
2021 - 2022		241	207	279		448	362	36	992	1390			0	0	0	0	420	(3360	454	450	68	
2022 - 2023		0	224	279		224	426	43	0,0	1359	1135		0	0	0	0	420	(2940	403	453	312	686
2023 - 2024		0	242	279		242	434		1102	1579			0	0	0	0	420	(2520	353	705	564	
2024 - 2025		0	262	279		262	514			1335			0	0	0	0	420	(2100	302	492	351	1600
2025 - 2026		0	284	279		284	525			1501	1217		0	0	0	0	420	(1680	252	686	545	
2026 - 2027		184	321	285		505	604	60	1102	1766	1261		0	0	0	0	420	(1260	202	958	639	2785
2027 - 2028		0	347	285		347	617			1988			0	0	0	0	420	0	840	151	1205	1070	3855
2028 - 2029		0	376	285		376	723		783	1578			0	0	0	0	420	(420	101	816	681	4536
2029 - 2030		0	407	285		407	738		909	1721	1314		0	0	0	0	420	(0 0	50	979	844	
2030 - 2031	0	0	440	285		440	866	-		2007	1567		0	0	0	0	0	(0 0	0	1282	1567	6946
2031 - 2032	0	157	481	290		638	872		1221	2180	1542		0	0	0	0	0	0	0 0	0	1409	1542	8488
2032 - 2033		0	521	290		521	1028			2542			0	0	0	0	0	(0 0	0	1731	2021	10509
2033 - 2034		0	564	290		564	1049		436	1590	1026		0	0	0	0	0	(0 0	0	736	1026	11535
2034 - 2035		0	610	290		610	1233			1835			0	0	0	0	0	(0 0	0	935	1225	12760
2035 - 2036	0	0	661	290		661	1258			1910	1249		0	0	0	0	0	(0 0	0	959	1249	14009
2036 - 2037	0	400	735	302		1135	1480			2206	1071		0	0	0	0	0	(0 0	0	1169	1071	15080
2037 - 2038		0	795	302		795	1511	151		2297	1502		0	0	0	0	0	(0 0	0	1200	1502	16582
2038 - 2039		0	861	302		861	1774			2649			0	0	0	0	0	(0 0	0	1486	1788	18370
2039 - 2040	0 0	0	702	353	1702	2634	1811			2760			0	0	0	0	0	(0 0	0	1475	126	18496
2040 - 2041	0	0	1008	394	1363	2371	2128	-		3185	814		0	0	0	0	0	(0 0	0	1783	814	19310
2041 - 2042	0	511	1133	409	0	1644	2170		928	3315			0	0	0	0	0	(0 0	0	1773	1671	20981
2042 - 2043	0	0	1226	409	0	1226	2552	255	1020	3827	2601		0	0	0	0	0	(0 0	0	2192	2601	23582
	8680	1493	13164	7557	3065	26402	25649	2564	20935	49148		4855				3825	4200	375	5	3644	24783	23582	ļ
								I			22746												

NAGPUR METRO	PROJECT																						Table 19.14
CAPITAL COST-FIX	KED		6684															1.40%					
CAPITAL COST - C	URRENT		8680																				
DOMESTIC FUND	ING - BASE C	ASE																					
(Completion	Additional	Running	Depreciation	Replaceme	Total Cost	Fare box	PD &	Revenue	Total	Net Cash	Equity from GOI	Availability	Cumulative	Cum. Loan	Loan	Repayment	IDC	Cumulative	Interest	Profit	Cash	Cumulative
Year	Cost	Capital	Expenses		nt Cost		Revenue	Advertisem	from	Revenue	Flow for IRR	& GOM & Cont.	of cash	cash			of Loan		loan incl.		before Tax	Balance	Cash
real								ent	Additional			By NIT /NMC							IDC				
									Taxes														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
2013 - 2014	452					452				0	-452	979	527		0	0	0	0	0				
2014 - 2015	1021					1021				0	-1021	1287	266	793	0	0	0	0	0				
2015 - 2016	1874					1874				0	-1874	964	-910	-117	117	117	0	1	118				
2016 - 2017	2412					2412			-	0	-2412	962	-1450	-1567	1567	1450	0	12	1580			_	
2017 - 2018	1983					1983				0	-1983	663	-1320	-2887	2887	1320	0	31					
2018 - 2019	740		162	262		902	303	30	211	544		0	-740		3627	740		0	3671	41	79	341	
2019 - 2020	198		175	262		373	309	31	578	918			-198	-3825	3825	198	0	0	3869	51	430	692	
2020 - 2021	0		190	262		190	362	36	768	1166	976		0	0	0	0	0	0	3869	54	660	922	
2021 - 2022	0	241	207	269		448	362	36	992	1390			0	0	0	0	0	0	3869	54	860	888	
2022 - 2023	0	0	224	269		224	426	43	890	1359			0	0	0	0	189	0	3680	54	812	892	
2023 - 2024	0	0	242	269		242	434	43	1102	1579			0	0	0	0	189	0	3492	52	1016	1097	
2024 - 2025	0	0	262	269		262	514	51	770	1335	1073		0	0	0	0	189	0	3303	49	755	835	
2025 - 2026	0	0	284	269		284	525	53	923	1501	1217		0	0	0	0	189	0	3114	46	902	982	
2026 - 2027	0	184	321	275		505	604	60	1102	1766			0	0	0	0	189	0	2925	44	1126	1029	
2027 - 2028	0	0	347	275		347	617	62	1309	1988			0	0	0	0	189	0	2737	41	1325	1411	9088
2028 - 2029	0	0	376	275		376	-	72	783	1578			0	0	0	0	189	0	2548	38	889	975	
2029 - 2030	0	0	407	275		407	738	74	909	1721	1314		0	0	0	0	189	0	2359	36	1003	1090	
2030 - 2031	0	0	440	275		440	866	87	1054	2007	1567		0	0	0	0	189	0	2170	33	1259	1345	
2031 - 2032	0	157	481	280		638	872	87	1221	2180			0	0	0	0	189	0	1982	30	1389	1323	
2032 - 2033	0	0	521	280		521	1028	103	1411	2542			0	0	0	0	189	0	1793	28	1713	1805	
2033 - 2034	0	0	564	280		564	1049	105	436	1590			0	0	0	0	189	0	1604	25	721	812	
2034 - 2035	0	0	610	280		610	1233	123	479	1835	1225		0	0	0	0	189	0	1415	22	923	1014	
2035 - 2036	0	0	661	280		661	1258	126	526	1910			0	0	0	0	189	0	1227	20	949	1040	
2036 - 2037	0	400	735	292		1135	1480	148	578	2206			0	0	0	0	189	0	1038	17	1162	865	
2037 - 2038	0	0	795	292		795	1511	151	635	2297	1502		0	0	0	0	189	0	849	15	1195	1299	
2038 - 2039	0	0	861	292		861	1774	177	698	2649	1788		0	0	0	0	189	0	661	12	1484	1587	
2039 - 2040	0	0	932	343	1702		1811	181	768	2760			0	0	0	0	189	0	472	9	1476	-72	
2040 - 2041	0	0	1008	384	1363		2128	213	844	3185			0	0	0	0	189	0	283	7	1786	619	
2041 - 2042	0	511	1133	399	0	1644	2170	217	928	3315	1671		0	0	0	0	189	0	94	4	1779	1478	
2042 - 2043	0	0	1226	399	0	1226	2552	255	1020	3827	2601		0	0	0	0	94	0	0	1	2201	2505	
	8680	1493	13164	7307	3065	26402	25649	2564	20935	49148	10.35%	4855				3825	3869	44		783	27894	26774	
											22746												

NAGPUR METRO	PROJECT																							Table 19.16
CAPITAL COST-F	XED		6684															12.00%						
CAPITAL COST -	CURRENT		5697																					
DOMESTIC FUNE	DING - BASE (CASE																						
Year	Completion Cost	Additional Capital	Running Expenses	Depreciatio n	Replaceme nt Cost	Total Cost	Fare box Revenue	PD & Advertisem ent	Revenue from Additional Taxes	Total Revenue	Net Cash Flow for IRR	Concession er Equity	Availability of cash	Cumulative cash	Cum. Loan	Loan	Repayment of Loan	IDC	Cumulative Ioan incl. IDC	Interest	Profit before Tax	Cash Balance	Cumulative Cash	Return on Equity (EIRR) Pre- Tax
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2013 - 2014	2 80	J	4	5	0	, 80	0	,	10	11	-80	475		395	10	1/	10	17	20	21	22	2.5	24	-475
2013 - 2014	549					549				0	-80	475		375	0	0	0	0	0	0		0	0	-475
2015 - 2016	1449					1449				0	-1449	475		-653	653	653	0	39	692	0		0	0	-475
2016 - 2017	1812			-	-	1812				0	-1812	473		-1991	1991	1338	0	159	-	0	0	0	0	-473
2010 - 2017	1433			1	1	1433				0	-1433	4/4	-1433	-3424	3424	1433	0	247	3869	0	0	0	0	-+/4
2018 - 2019	290		162	184	1	452	303	30	211	544		0	-290	-3714	3714		0	217	4159	464	-266	-82	-82	-82
2019 - 2020	84		175	184		259	309					0	-84	-3798	3798	84	0		4243	499	60	244		244
2020 - 2021	0		190			190						0	0	0	0	0	424		3819	509	283	43		43
2021 - 2022	0	241	207	191		448	362	36	992	1390	942		0	0	0	0	424		3394	458	534	59	264	59
2022 - 2023	0	0	224	191		224	426	43	890	1359	1135		0	0	0	0	424		2970	407	537	303	567	303
2023 - 2024	0	0	242	191		242	434	43	1102	1579	1337		0	0	0	0	424		2546	356	790	556	1123	556
2024 - 2025	0	0	262	191		262	514	51	770	1335	1073		0	0	0	0	424		2122	305	577	343	1467	343
2025 - 2026	0	0	284	191		284	525	53	923	1501	1217		0	0	0	0	424		1697	255	771	538	2005	538
2026 - 2027	0	184	321	197		505	604	60	1102	1766	1261		0	0	0	0	424		1273	204	1044	633	2638	633
2027 - 2028	0	0	347	197		347	617	62	1309	1988	1641		0	0	0	0	424		849	153	1291	1064	3702	1064
2028 - 2029	0	0	376	197		376	723	72	783	1578	1202		0	0	0	0	424		424	102	903	676	4377	676
2029 - 2030	0	0	407	197		407	738	74	909	1721	1314		0	0	0	0	424		0	51	1066	839	5216	839
2030 - 2031	0	0	440			440	866	87					0	0	0	0	0		0	0	1370	1567	6783	1567
2031 - 2032	0	157	481			638	872						0	0	0	0	0		0	0	1497	1542		1542
2032 - 2033	0	0	521			521	1028		1411				0	0	0	0	0		0	0	1819	2021	10346	2021
2033 - 2034	0	0	564			564	1049						0	0	0	0	0		0	0	824	1026	11372	1026
2034 - 2035	0	0	610			610	1233						0	0	0	0	0		0	0	1023	1225	12597	1225
2035 - 2036	0	0	661			661	1258						0	0	0	0	0		0	0	1047	1249		1249
2036 - 2037	0	400	735			1135	1480						0	0	0	0	0		0	0	1257	1071	14917	1071
2037 - 2038	0	0	795			795	1511						0	0	0	0	0		0	0	1288	1502	16419	1502
2038 - 2039	0	0	861			861	1774	177					0	0	0	0	0		0	0	1574	1788	18207	1788
2039 - 2040	0	0	932	265			1811	181	768				0	0	0	0	0		0	0	1563	126	18333	126
2040 - 2041	0	0	1008	306			2128		844				0	0	0	0	0		0	0	1871	814	19147	814
2041 - 2042	0	511	1133	321		1644	2170	217	928				0	0	0	0	0		0	0	1861	1671	20818	1671
2042 - 2043	0	0	1226	321		1226	2552	255	1020	3827	2601		0	0	0	0	0		0	0	2280	2601	23419	2601
	5697	1493	13164	5357	3065	5 23419	25649	2564	20935	49148		1899				3798	4243	445		3764	26863	23419		16.00%
				I	I						25729													

CHAPTER 20

ECONOMIC APPRAISAL

20.1 INTRODUCTION

- 20.2 VALUES ADOPTED FOR SOME IMPORTANT VARIABLES
- 20.3 ECONOMIC BENEFIT STREAM
- 20.4 METRO CONSTRUCTION COST
- 20.5 ECONOMIC PERFORMANCE INDICATORS
- 20.6 SENSITIVITY ANALYSIS
- 20.7 QUALIFIED BENEFITS
- 20.8 TRANSPORT ORIENTED DEVELOPMENT (TOD) & EIRR

TABLES

- TABLE 20.1 BENEFIT COMPONENTS DUE TO METRO
- TABLE 20.2 VALUES ADOPTED FOR SOME IMPORTANT VARIABLES
- TABLE 20.3 VEHICLE OPERATING COST IN RS.
- TABLE 20.4VEHICLE EMISSION 2011-2021 (CPCB) AND COST IN RS.
- TABLE 20.5 ACCIDENT RATE^{\$} AND COST IN RS.
- TABLE 20.6 TRAFFIC PARAMETER VALUES
- TABLE 20.7COMPONENT WISE BENEFIT VALUE STREAM
- TABLE 20.8 AVERAGE MODAL SPLIT IN STUDY AREA
- TABLE 20.9 ESTIMATED CAPITAL AND RECURRING COST INCLUDING CENTRAL TAX
- TABLE 20.10 ECONOMIC INDICATOR VALUES (WITH CENTRAL TAX)
- TABLE 20.11 SENSITIVITY OF EIRR
- TABLE 20.12 ENVIRONMENTAL BENEFITS QUANTIFIED
- TABLE 20.13 TRAVEL BENEFITS QUANTIFIED

FIGURES

FIG 20.1 PERCENT OF BENEFITS

Chapter - 20

ECONOMIC APPRAISAL

20.1 INTRODUCTION

Economic benefits are social and environmental benefits which are quantified and then converted into money cost and discounted against the cost of construction and maintenance for deriving Economic Internal Rate of Return (EIRR). When actual revenue earned from fare collection, advertisement and property development are discounted against construction and maintenance cost, interest (to be paid) and depreciation cost, Financial Internal rate of Return (FIRR) is obtained. Therefore, EIRR is viewed from socio-economic angle while FIRR is an indicator of pure financial profitability and viability of any project

- 20.1.1 Economic appraisal of a project starts from quantification of measurable economic benefits in economic money values, which are basically the savings of resource cost due to introduction of the metro line. Economic savings are derived from the difference of the cost of the same benefit components under 'with' and 'without' metro line. Total net savings/or benefit is obtained by subtracting the economic cost of the project (incurred for construction (Capital) and maintenance (recurring) costs for the metro line) from the benefits out of the project in each year. The net benefit value which would be negative during initial years becomes positive as years pass. Internal rate of return and benefit cost ratio are derived from the stream.
- 20.1.2 The sources from where economic savings occur are identified first. Although there are many kinds of primary, secondary and tertiary benefits, only the quantifiable components can be taken to measure the benefits. These components are quantified by linking with the number of passengers shifted and the passenger km saved by the trips which are shifted from road/rail based modes to metro. It may be observed that first four benefit components given in **Table 20.1** are direct benefits due to shifting of trips to metro, but other benefit components are due to decongestion effect on the road. Benefit components were first estimated applying market values then were converted into respective

Economic values by using separate economic factors which are also given in table 20.1. Depending upon methodology of estimation, economic factors are assumed. Overall economic value of benefit components is 93% of the market value. Similarly economic value of the cost components are 80% of the market cost.

	Benefit Components	Economic Factors
1	Construction Cost	80%
2	Maintenance Cost	80%
3	Annual Time Cost Saved by Metro Passengers	90%
4	Annual Fuel Cost Saved by Metro Passengers	90%
5	Annual Vehicle Operating Cost Saved by Metro Passengers	90%
6	Emission Saving Cost	100%
7	Accident Cost	100%
8	Annual Time Cost Saved by Road Passengers	90%
9	Annual Fuel Cost Saved by Road Passengers	90%
10	Annual Infra Structure Maintenance Cost	90%
11	Overall economic factor for the benefit components	93%

Table 20.1: Benefit Components due to Metro

20.2 VALUES ADOPTED FOR SOME IMPORTANT VARIABLES

Benefit components are converted (by applying appropriate unit cost) to money values (Rs.). Some of the values used for economic analysis are shown in **Table 20.2**.

	Values	Important variables
1	Rs. 2.791/min (2013)	Time Cost derived from passenger's journey time and fare paid (mode wise).
2	Market Rate (2012)	Fuel Cost (value of Petrol, Diesel and CNG).
3	Table 20.3	Vehicle Operating Cost (Derived from Life Cycle Cost of different passenger vehicles per km)
4	Table 20.4 (CPCB)	Emission (gm/km as per CPCB and UK Norms) Emission Saving Cost (adopted for Indian conditions in Rs/ton).
5	Table 20.5 (Accident Rate & Cost)	Accident Rate (No of fatal and all accidents per one Cr.KM). Accident costs are derived from published papers at current rate.
6	51.3%	Passenger km to Vehicle km conversion factor (derived from modal split within study area as reported in chapter 2)
7	Road User Cost Study Model (CRRI- 2010)	Fuel Consumption of vehicles at a given speed is derived
8	Rs. 1.0/vehicle km	Infra Structure Maintenance Cost is derived from published values on annual expenditure on roads and traffic and

		annual vehicle km
9	13.54 min	Average Journey Time Saved for average km journey after
		Shifting (Derived)
10	24.05 kmph	Average Journey Speed (Speed & Delay Study)

Table 20.3: Vehicle Operating Cost in Rs.

Per Vehicle KM	Bus	4 Wh (Large)	4 Wh (Small)	2 Wh (MC)	2 Wh (SC)	3 Wh (Auto)	Mini Bus
Maintenance Cost	3.94	3.31	2.01	0.57	0.72	2.25	2.75
Capital Cost	2.40	2.67	1.20	0.18	0.16	0.72	1.72
Total VOC	6.98	6.58	3.54	0.82	0.96	3.27	4.92

Table 20.4: Vehicle Emission 2011-2021(CPCB) and Cost in Rs.

VEHICLE	CO	HC	NOX	PM	CO	CO2
BUS	3.72	0.16	6.53	0.24	3.72	787.72
2W-2 STROKE	1.4	1.32	0.08	0.05	1.4	24.99
2W-4 STROKE	1.4	0.7	0.3	0.05	1.4	28.58
MINI BUS	2.48	0.83	8.26	0.58	2.48	358.98
4W-SMALL	1.39	0.15	0.12	0.02	1.39	139.51
4W-LARGE	0.58	0.05	0.45	0.05	0.58	156.55
TATA MAGIC	1.24	0.17	0.58	0.17	1.24	160
3W	2.45	0.75	0.12	0.08	2.45	77.89
Cost		500				

Table 20.5: Accident Rate^{\$} and Cost in Rs

Accident Rate in the year 2016	Cr. Vehicle KM	Cost in Rs
All Types.	2.0	588911
Fatal Accident.	0.2	1692648

\$ 2011 figure of accidents in Nagpur is used

Traffic parameter values used for economic analysis are given in Table 20.6.

			e paramete	Talaco		
TRAFFIC INPUT	2016	2021	2026	2031	2036	2041
Trips/day NAGPUR METRO	352442	383439	419135	458893	508656	563735
Line Length (km)	39.5	39.5	39.5	39.5	39.5	39.5
Average Trip length (km)	6.42	6.45	6.49	6.53	6.52	6.52
Passenger km/km	57274	62641	68908	75897	83973	93080

Table 20.6: Traffic parameter values

Vehicles	% PASS	% Vehicle
BUS	0.33%	10.00%
MINI BUS	0.00%	0.00%
CAR	10.71%	30.00%
TAXI	0.39%	1.16%
2 WH	30.68%	33.75%
AUTO	9.18%	22.96%
CYCLE	2.13%	2.13%

Table 20.7: Average modal split in the study area

20.3 ECONOMIC BENEFIT STREAM

Benefits in terms of money value are estimated directly from the projected passenger km saved for the horizon years (2016, 2021, 2026, 2031 and 2041) and values for other years are interpolated on the basis of projected traffic. Market values are used for calculating costs and then appropriate economic factors (see table 20.1) are applied. For each year values of each benefit components are obtained and thus benefit stream is estimated. Benefit Components Stream for **Nagpur Metro Rail** is shown in **Table 20.8**.

Annual Time Annual Fuel Annual Vehicle Annual Time Annual Fuel Emission Annual Infra **Total Benefits** Cost Saved by **Operating Cost** Cost Saved Cost Saved Cost Saved by Accident Saving Structure without Year Metro Metro Saved by Metro Cost in Cr. by Road by Road Year Cost in Cr. Maintenance Discount in Cr. Passengers in Passengers in Cr. Rs. Passengers in Passengers in Passengers in Cost in Cr. Rs. Rs. Rs. Cr. Rs. Cr. Rs. Cr. Rs. Cr. Rs. Rs. 2018 2019 527.12 231.95 63.27 4.42 1225.91 249.46 50.27 12.79 86.62 2019 2020 556.10 256.49 252.95 45.77 13.98 67.14 4.71 89.16 1286.30 275.85 71.26 2020 2021 586.68 263.80 40.03 15.29 5.00 91.78 1349.69 2021 2022 618.93 271.38 300.79 43.65 16.72 75.62 5.31 94.47 1426.86 2022 2023 654.19 279.55 328.34 47.65 18.30 80.33 5.63 97.34 1511.31 2023 2024 288.05 358.41 52.01 85.33 5.96 1601.55 691.46 20.03 100.30 2025 1697.98 2024 730.86 296.90 391.24 56.78 21.92 90.65 6.30 103.34 2025 2026 772.49 306.10 427.09 61.98 23.99 96.30 6.65 106.49 1801.09 2026 2027 816.50 315.88 466.54 67.70 26.27 102.37 7.02 109.80 1912.09 2027 2028 863.58 325.95 509.45 73.93 28.77 108.79 7.41 113.18 2031.05 2029 2028 913.37 336.43 556.33 80.73 31.50 115.61 7.80 116.66 2158.42 2029 2030 966.02 383.20 670.29 97.27 34.49 140.97 9.06 132.67 2433.97 2030 2031 1021.72 732.60 149.98 9.54 2590.83 396.04 106.31 37.76 136.88 2031 2032 1080.62 409.42 800.75 116.20 41.34 159.57 10.04 141.22 2759.17 2032 2033 1141.72 424.85 880.08 124.65 45.24 171.18 10.70 146.51 2944.92 2033 2034 1206.26 440.86 967.27 133.70 49.51 151.99 3144.64 183.63 11.40 2034 2035 1274.46 457.48 1063.10 143.42 54.18 196.98 12.16 157.68 3359.46 2035 2036 1346.51 474.71 1168.43 153.84 59.29 211.31 12.96 163.59 3590.63 2036 2037 1422.63 492.60 1284.18 165.02 64.88 226.68 13.81 169.71 3839.52 2037 2038 1503.06 511.17 1411.41 177.01 71.00 243.17 14.72 176.07 4107.60 2038 2039 1588.03 530.43 1551.24 189.88 77.70 260.86 15.69 182.66 4396.48 2039 2040 1704.92 1677.81 550.42 203.68 85.02 279.83 16.72 189.50 4707.90 2040 2041 5043.77 1772.67 571.16 1873.83 218.48 93.04 300.18 17.82 196.59 2041 2042 1872.88 592.68 2059.47 234.35 101.82 322.02 19.00 203.95 5406.18 2042 2043 1978.76 615.02 2263.51 251.38 111.42 345.44 20.25 211.59 5797.37

Table 20.8 Component wise Benefit Value Stream

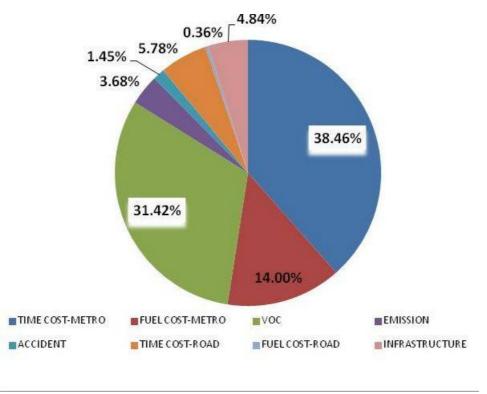


Figure 20.1 Percent of Benefits

Total Benefit between the years 2019-2043 (Component wise) are shown in figure 20.1 which shows that benefits are mainly coming from saving of travel time (metro and road) (44.25%), vehicle operation cost (VOC) (31.42%) and fuel cost (14.36%). Environmental benefit from emission reduction, accident reduction and road maintenance cost (together) is 9.97%. In this area (Nagpur City), personalized modes (cars, three and two wheelers) are dominant (87.87%) which have made vehicle by passenger ratio very high (51%). Average modal split obtained from the past study shows that about 10% passengers were using public bus within the city. Traffic volume count survey shows that 80.91% vehicle trips are by private modes as. Obviously presence of dependable mass transport system is not there.

20.4 METRO CONSTRUCTION COST

20.4.1 Total cost of metro construction (CAPITAL COST) is derived after considering cost of all major component such as Relocation and Rehabilitation(RR), Civil construction for underground and elevated portions, Stations and Depots, Track laying, Signalling and telecommunication, Power traction line, Rolling stock, Man power etc. RECURRING COST includes energy cost, maintenance cost, and operation cost. Economic analysis period is taken from 2013-14 to 2042-43 out of which 6 years (2013-2018) are marked as construction period. Additional capital expenditure may be incurred in the years 2021-22 & 2026-27 (purchase of more rolling stock), 2031-32 and 2040-41. Operation is expected to start in 2018- 2019 (Year 6). This cost stream is generated with Central taxes. Detail is shown in **Table 20.9.**

Year	Year	Capital Cost	Recurring Cost
Start	Ending	Cr. Rs.	Cr. Rs
2013	2014	447	0
2014	2015	995	0
2015	2016	1809	0
2016	2017	2334	0
2017	2018	1923	0
2018	2019	719	162
2019	2020	194	175
2020	2021	0	190
2021	2022	241	207
2022	2023	0	224
2023	2024	0	242
2024	2025	0	262
2025	2026	0	284
2026	2027	184	321
2027	2028	0	347
2028	2029	0	376
2029	2030	0	407
2030	2031	0	440
2031	2032	157	481
2032	2033	0	521
2033	2034	0	564
2034	2035	0	610
2035	2036	0	661

Table 20.9: Estimated Capital and Recurring Cost including Central Tax

2036	2037	400	735
2037	2038	0	795
2038	2039	0	861
2039	2040	1702	932
2040	2041	1363	1008
2041	2042	511	1133
2042	2043	0	1226

20.5 ECONOMIC PERFORMANCE INDICATORS

After generating the cost and benefit stream table, values of economic indicators are derived and are presented in **table 20.10**. Project period is 2013-2043, EIRR (with central tax) is found to be **17.70%** and B/C ratio as 3.45 and with 12 % discount, EIRR is 5.09% and B/C ratio is 0.70. NPV without discount is Rs 51210 Cr. and with 12% discount rate, NPV is Rs.3404 Cr. which shows that the project is economically viable.

Nagpur Metro Network	WITHOUT DISCOUNT	WITH DISCOUNT (12%)
Total cumulative cost	20914	6537
Total cumulative benefit	72125	4545
Benefit Cost Ratio	3.45	0.70
NPV	51210	3404
EIRR	17.70%	5.09%

Table 20.10. Economic Indicator Values (with Central Tax)

20.6 SENSITIVITY ANALYSIS

Sensitivity analysis for EIRR and B/C ratio is performed for both with and without discount and the output is given in the **table 20.11**. 2042-43 is taken for the year of comparison. EIRR and B/C ratio after discount of 12% shows that the project is economically viable.

SENSI	TIVITY	WITHO	WITHOUT DISCOUNT			WITH DISCOUNT (12%)		
TRAFFIC	COST	EIRR	B/C	COST	EIRR	B/C	COST	
0%	0%	17.70%	3.45	20914	5.09%	1.52	6537	
-10%	0%	17.09%	3.32	20914	4.55%	1.46	6537	
-20%	0%	16.47%	3.18	20914	3.99%	1.40	6537	
0%	10%	16.35%	3.14	23006	3.88%	1.38	7191	
0%	20%	15.15%	2.87	25097	2.81%	1.27	7845	
-10%	10%	15.76%	3.02	23006	3.36%	1.33	7191	
-20%	20%	13.99%	2.65	25097	1.78%	1.16	7845	

Table 20.11 Sensitivity of EIRR

20.7 Quantified Benefits.

Benefits which are shown in previous tables are money value of the benefits. These benefits are estimated first and the converted into money value. For brevity, only 5 year estimates are shown in table 20.8 (Reduction of Vehicle gas Emission) and in table 20.12 (Reduction of Fuel, Time of Travel, Vehicle on Road etc).

Tons/Year	2019	2020	2021	2022	2023
CO	1892.94	1484.86	1513.21	1543.73	1574.88
HC	980.89	746.28	760.52	775.86	791.52
NOX	235.59	236.60	241.12	245.98	250.95
PM	54.82	53.25	54.27	55.37	56.48
SO2	4.06	3.76	3.83	3.91	3.99
CO2	64621	65861	67118	68472	69854
Total Emission Saved	67789	68386	69691	71097	72531

Table 20.12 Environmental Benefits Quantified

From Table 20.12, it may be seen that In 2020, CO2 reduction will be 65.86 thousand tons and reduction of other gases will be 3.168 thousand tons.

Quantified Benefits in Horizon Years	2019	2020	2021	2022	2023
Annual Time Saved by Metro Passengers					
in Cr. Hr.	3.21	3.32	3.44	3.56	3.69
Annual Fuel Saved by Metro Passengers					
in thousand Tons.	46.77	48.17	49.63	51.19	52.82
Daily vehicles reduced (off the road)	56453	57536	58634	59817	61024
Reduced No of Fatal Accidents in Year	19.38	19.81	20.24	20.70	21.18
Reduced No of Other Accidents in year	174.46	178.27	182.16	186.32	190.58
Annual Vehicle km Reduced in Thousand					
Km.	26.344	26.849	27.362	27.914	28.477

Table 20.13 Travel Benefits Quantified

Amount of travel in terms of vehicle reduced due to shifting of passengers to Metro Rail is equivalent to reduction of 57 thousand vehicles on the road in 2020. More than 19 fatal accidents and 182 other accidents may be avoided (approximately 4% of 2011 published figure). Hence it is expected that there will be some improvement of the overall ambience of the city.

20.8 Transport Oriented Development (TOD) & EIRR

There will be generation (addition of extra trips) of Ridership on Metro due to Transport Oriented Development Introduction of Modern Mass Transit System (Metro) will have an impact on city's landuse in near future. Values of land which are closer to the metro line will increase very quickly, commercial activities near station areas will increase and people will not hesitate to live in remote areas of

the city (but near to metro station). Due to presence of metro existing bus routes may change, some old routes may stop operation and some new routes may be introduced. A detail study will be needed to identify, quantify and to estimate economic impact of such likely changes. Detail discussion and evaluation is beyond the scope within this chapter. Nevertheless, it will be interesting to know, for 10% increase of ridership, increase in EIRR value will be 6.57%, and for 20% increase EIRR will increase by 9.96%, keeping other traffic inputs unchanged

CHAPTER 21

IMPLEMENTATION STRATEGY

- 21.1 INTRODUCTION
- 21.2 INSTITUTIONAL ARRANGEMENT
- 21.3 PROPOSED IMPLEMENTATION MODEL
- 21.4 ORGANIZATION SET-UP OF CMRC
- 21.5 HIGH POWER COMMITTEE
- 21.6 LEGAL COVER FOR NAGPUR METRO RAIL PROJECT
- 21.7 CONCESSIONS FROM GOVERNMENT

FIGURES

- FIGURE 21.1 PROPOSED NMRC ORGANIZATION STRUCTURE
- ANNEXURE METRO RAIL (AMENDMENT ACT) 2009

Chapter - 21

IMPLEMENTATION STRATEGY

21.1 INTRODUCTION

Nagpur city is having huge number of two wheelers and modal split towards public transport is very low. An effective public transport mode in the form of metro is expected to provide a fast, reliable, convenient and economical mode of transport to the Nagpur citizens and also the public commuting to Nagpur. It will also help in growth of the city and area as well. To ensure that the project is implemented on priority basis to, the project has to go through fast and a visible positive support from Nagpur Improvement Trust (NIT), GoM and GoI. Hence, a carefully drawn up implementation strategy is necessary for ensuring efficient execution of the metro project.

21.2 INSTITUTIONAL ARRANGEMENT

To enable Nagpur metro project to be implemented without any loss of time and cost over-run, effective institutional arrangements would need to be set up. Presently, Nagpur Improvement Trust (NIT) is dealing with this Project but there is need to have an SPV responsible entirely for this project.

21.2.1 Special Purpose Vehicle

This SPV should be on the same lines as DMRC and may be named as 'Nagpur Metro Rail Corporation Ltd.' (NMRC). Equity of NMRC will be contributed by GoM and Gol thus the Directors on its Board will be nominees of Government of Maharashtra and Government of India. In order to avoid delays usually associated with bureaucratic process of decision making, the Board of Directors (BOD) of NMRC should be vested with full powers needed to implement the project. The BOD, in turn, should delegate adequate powers to the Managing Director to take all decisions in day to day matters. The Managing Director should be a technocrat of proven record and impeccable integrity. A railway background would be an added advantage. A metro background would be most desirable.

21.2.2 Implementation models

Once the SPV is created, there are different models which can be adopted for implementing the Nagpur metro project. Three models have been analyzed below.

a) Implementation through Government

Under this model, the entire project development, implementation and operation is undertaken and financed by the government authority. Some recent examples of metro rail projects implemented directly through Government agencies are as under.

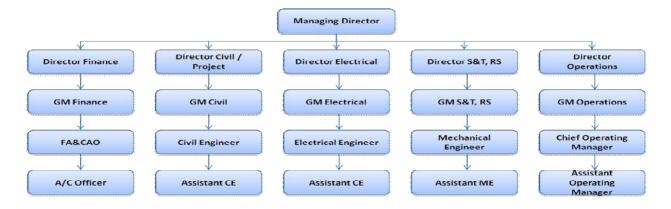
- Delhi
- Bangalore
- Chennai
- Jaipur
- Kolkata

b) Implementation through BOT model

BOT approach assumes that the metro is given to a private partner (Concessionaire) to develop and operate over the concession period. The private partner brings requisite funds and the efficiency of private sector management in the implementation as well as operation of the project. NMRC's role in this option is limited to that of a regulatory authority. Thus NMRC would monitor the implementation of the project such as laying down the passengers fares, targets for the minimum number of services to be run by the private partner, frequency, punctuality and reliability of these services, etc. There cannot be any compromise on this and penalties for not achieving these targets will be spelt out in advance. The private partner would assume substantial financial, technical and operational risk in the project and upon expiration of the concession period hand back the project to the government. There are only two projects namely Hyderabad and Mumbai being implemented through BOT model. The success of this model in India is still to be known.

c) Implementation through PPP model

It has been experienced that developing metro rail projects through PPP is a slow and time consuming process. Transferring ROW clearance, utility diversions and other site related encumbrance responsibilities to the private sector results in higher time runs. As a result, a new hybrid model has been tried in which the site development and civil construction work is managed by the government agency while the operations and management is done by the private sector.


Under this mode, the government entity undertakes all civil works and the associated station work, while all other works like rolling stock, signaling and telecom, track laying work are undertaken by the private partner along with management of the metro service over the concession period. This enables the client to monitor and adhere to quality and construction timelines for the project in a better way. Implementation of airport express line in Delhi is the only example of this model in India.

21.3 PROPOSED IMPLEMENTATION MODEL

Due to very low FIRR and uncertainties of getting the agencies for taking up this work on BOT/PPP model, it is proposed that implementation of Nagpur Metro should be done on DMRC/BMRC model.

21.4 ORGANIZATION SET-UP OF NMRC

The organizational set-up of NMRC should be such that it can undertake the execution of Metro project in efficient and effective manner. A suggestive organization structure considering various stages of implementation for Nagpur Metro Rail is as under.

Figure 21.1: Proposed NMRC Organization Structure

Note: This Organization Structure would be assisted by support staff during all phases of the project.

Therefore, NMRC should be a lean but effective organization with full mandate and total power – with accountability and responsibility – free from political and bureaucratic control. NMRC management should comprise of Managing Director with full executive powers and functional directors who would be initiated into the organization during various phases of the system. All Functional Directors will be full time members of the Management Board. The Directors will be assisted by Heads of Departments in each of the major disciplines and they in turn will be assisted by the requisite support staff.

Implementing a metro project in a congested metropolis is indeed a challenge. In sheer size, magnitude and technical complexity there are few parallels to metro projects. Further, these projects are to be carried out in difficult urban environment without disturbing city life, while at the same time preserving the environment. The project involves integration of a number of complex technical systems. Some of the technologies used in these systems are new to the country.

Since NMRC may not have the required expertise and experienced manpower to check and monitor the private partner's work, it may be necessary to engage General Consultants from the very start of the metro project, who will do this job on behalf of NMRC. Generally Consultants fee is about 3-4% of the project cost. For any expert opinion on the technically difficult matters, NMRC may also need Prime Consultants whose fee is about 0.5 - 1% of project cost.

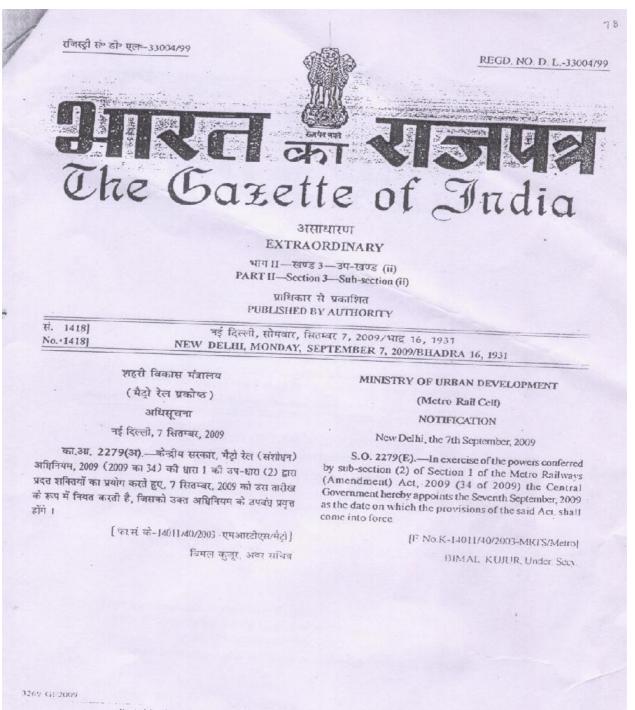
21.5 HIGH POWER COMMITTEE

During the implementation of the project, issues with regard to acquisition of land, diversion of utilities, shifting of structures falling on the project alignment etc. are likely to arise. For expeditious resolution of these problems, an institutional mechanism needs to be set up at the State Government level. Towards this end, it is recommended that a High Power Committee under the chairmanship of Chief Secretary, Govt. of Maharashtra should be set up. Other members of this Committee should be Secretaries of the concerned Departments of the State Government who will be connected in one way or the other with the implementation of the project. This Committee should meet once a month or more frequently if required and sort out all problems brought before it by NMRC.

21.6 LEGAL COVER FOR NAGPUR METRO RAIL PROJECT

Government of India has passed Legislation as "The Metro Railways (Amendment) Act 2009" for implementation of metro rail in any metropolitan area and NCR. Copy of the Act is attached as Annexure. The implementation of metro in Nagpur urban complex may be taken up under the cover of above Act.

21.7 CONCESSIONS FROM GOVERNMENT


Metro rail projects require heavy capital outlay. Loans have to be taken to fund a part of the capital cost of the project. These projects yield low financial internal rate of return though their economic internal rate of return is very high. With reasonable fare level, servicing of these loans often pose problems. Therefore, to make the project financially viable, the fares will have to be substantially increased, but this will result in their reaching socially un-acceptable levels. This will result in the ridership coming down significantly, as it is sensitive to increase in the fare levels. Thus the very objective of constructing the metro rail system to provide an affordable mode of mass travel for public is defeated. It, therefore, becomes necessary to keep the initial capital cost of a metro project as low as possible so that the fare level of the metro system can be kept at reasonable level.

Taxes and duties constitute about 16 - 18% of a metro rail projects capital cost. Following are the taxes and duties, which have to be borne by a metro project:

- Custom Duty on all imported rolling stock and other equipment needed for the project.
- Excise Duty on all indigenously manufactured rolling stock and other indigenously finished goods required for the project.
- Sales Tax on all purchases made for implementation of the project whether directly by the project implementation authority or by the contractors executing the project.
- Sales Tax on works contracts to be executed for the implementation of the project.
- > Tax on electricity required for operation and maintenance of the metro system.

It is recommended that Gol to pay the Central taxes to the extent of 50% in the form of Subordinate debt as being agreed for the metro projects being sanctioned by Gol and 50% of taxes to be borne by State Government.

Annexure - Metro Rail (Amendment Act) 2009

Printed by the Manager, Gost of India Press, Ring Road, Maxanuri, New Deliu-110064 and Published by the Controller of Publications, Ticthe-110054

रवितानी के की (KA)04/0007/2003-REGISTERED NO. DL-(N)04/0007/2003 -09 abi Gazette of Inc असाधारण EXTRAORDINARY भाग 11 - खण्ड 1 PART II - Section I ' प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY H- 381 नई दिल्ली, बृहस्पतिवार, अगस्त 27, 2009/भाद 5, 1931 NEW DELHI, THURSDAY, AUGUST 27, 2009 / BHADRA 5, 1931 No. 381 इस भाग में भिन्न पृष्ठ संख्या दी जाती है जिससे कि यह अलग संकलन के रूप में रखा जा सके। Separate paging is given to this Part in order that it may be filed as a separate compilation. MINISTRY OF LAW AND JUSTICE (Legislative Department) New Delhi, the 27th August, 2009/Bhadra 5, 1931 (Saka) The following Act of Parliament received the assent of the President on the 26th August, 2009, and is hereby published for general information:-THE METRO RAILWAYS (AMENDMENT) ACT, 2009 No. 34 OF 2009 [26th August, 2009.] An Act further to amend the Metro Railways (Construction of Works)

Act, 1978 and to amend the Delhi Metro Railways (Operation and Maintenance) Act, 2002.

BE it enacted by Parliament in the Sixtieth Year of the Republic of India as follows:----

CHAPTER I

PRILIMINARY

1. (1) This Act may be called the Metro Railways (Amendment) Act, 2009.

(2) It shall come into force on such date as the Central Government may, by notification in the Official Gazette, appoint.

Short title and commencement

Chapter 18: Implementation Strategy

[PART II

THE GAZETTE OF INDIA EXTRAORDINARY

CHAPTER II

Amendment of section 1

2

AMENDMENT TO THE METRO RAILWAYS (CONSTRUCTION OF WORKS) ACT, 1978

2. In the Metro Railways (Construction of Works) Act, 1978 (hereafter in this Chapter referred to as the Metro Railways Act), in section 1, in sub-section (3), for the portion beginning with the words "such other metropolitan city" and ending with the words "to that 33 of 1978 city accordingly", the following shall be substituted, namely:-

"the National Capital Region, such other metropolitan city and metropolitan area, after consultation with the State Government, and with effect from such date as may be specified in that notification and thereupon the provisions of this Act shall apply to the National Capital Region, such metropolitan city or metropolitan area

3. In the Metro Railways Act, for the words "metropolitan city" occurring in clause (h) of sub-section (1) of section 2, clause (c) of sub-section (1) of section 4 and clause (a) of sub-section (1) of section 32, the words "metropolitan city, metropolitan area and the National

Amendment of section 2.

Substitution of

"metropolitan

city" by words "metropolitan city. metropolitan area and National Capital Region"

words

4. In section 2 of the Metro Railways Act, in sub-section (1),-

(i) after clause (h), the following clause shall be inserted, namely:-----

(ha) "metropolitan area" shall have the meaning assigned to it in clause (c) of article 243P of the Constitution;";

(ii) after clause (o), the following clause shall be inserted, namely:-

(00) "National Capital Region" means the National Capital Region as defined in clause (f) of section 2 of the National Capital Region Planning Board

2 of 1985

CHAPTER III

AMENOMENT TO THE DELHI METRO RAILWAY (OPERATION AND MAINTENANCE) ACT, 2002 5. Throughout the Delhi Metro Railway (Operation and Maintenance) Act, 2002 60 of 2002

Substitution of references to (hereafter in this Chapter referred to as the Delhi Metro Railway Act), for the words city of Delhi" by references inetropolitan city and metropolitan area" shall be substituted. Capital Region and any other niciupalitan area'

Amendment of

section 1

6. In section 1 of the Delhi Metro Railway Act, for sub-sections (1) and (2), the following sub-sections shall be substituted, namely:-

"metropolitan city of Delhi" wherever they occur, the words "the National Capital Region,

"(1) This Act may be called the Metro Railways (Operation and Maintenance) Act. 2002

(2) It extends in the first instance to the National Capital Region and the Central Government may, by notification, after consultation with the State Government, extend this Act to such other metropolitan area and metropolitan city, except the metropolitan

DETAILED PROJECT REPORT FOR NAGPUR METRO RAIL PROJECT

Chapter 18: Implementation Strategy

SEC. 1] THE GAZETTE OF INDIA EXTRAORDINARY city of Calcutta, and with effect from such date as may be specified in that notification and thereupon the provisions of this Act shall apply to that metropolitan area or 7. In section 2 of the Delhi Metro Railway Act, in sub-section (1),-(i) for clause (a), the following clauses shall be substituted, namely:-Amendment of section 2 '(a) "Central Government", in relation to technical planning and safety of metro railways, means the Ministry of the Government of India dealing with (aa) "Claims Commissioner" means a Claims Commissioner appointed under section 48:": "(h) "metropolitan area" shall have the meaning assigned to it in clause (c) of article 243P of the Constitution; (ha) "metropolitan city" means the metropolitan city of Bombay, Calcutta, Delhi or Madras;'; (iii) after clause (k), the following clause shall be inserted, namely:-(ka) "National Capital Region" means the National Capital Region as defined in clause (f) of section 2 of the National Capital Region Planning Board 2 of 1985 8. In section 6 of the Delhi Metro Railway Act, in sub-section (2), after clause (b), the Amendment of following clauses shall be inserted, namely: "(ba) develop any metro railway land for commercial use; section 6. (bb) provide for carriage of passengers by integrated transport services or any other mode of transport;". 9. Section 7 of the Delhi Metro Railway Act shall be renumbered as sub-section (1) Amendment of thereof and after sub-section (1) as so renumbered, the following sub-section shall be inserted, namely:section 7 "(2) The Commissioner shall function under the administrative control of the Chief Commissioner of Railway Safety appointed under section 5 of the Railways 24 of 1989. 10. For section 12 of the Delhi Metro Railway Act, the following section shall be Substitution of substituted, namely:new section for "12. The Chiel Commissioner of Railway Safety shall, for each financial year, Annual report. prepare in such form, and within such time, as may be prescribed, an annual report giving a full account of the activities of the Commissioners during the financial year immediately preceding the financial year in which such report is prepared and forward copies thereof to the Central Government." II. In section 13 of the Delhi Metro Railway Act, for the word "Commissioner", the Amendment of words "Chief Commissioner of Railway Safety" shall be substituted 12. In section 23 of the Delhi Metro Railway Act, in sub-section (1), for the words Amendment of "Hindi and English", the words "Hindi, English and official language of the State in which section 23 such station is located" shall be substituted 13. In section 26 of the Delhi Metro Railway Act, in sub-section (7), the words "a Amendment of small" shall be omitted. 14. In section 34 of the Delhi Metro Railway Act, for sub-section (4), the following Amendment of section i.

THE GAZETTE OF INDIA EXTRAORDINARY [PART II-SEC. 1]

"(4) The Central Government and the State Government shall nominate one member each to the Fare Fixation Committee:

Provided that a person who is or has been an Additional Secretary to the Government of India or holds or has held an equivalent post in the Central Government or the State Government shall be qualified to be nominated as a member."

Amendment of section 38.

15. In section 38 of the Delhi Metro Railway Act, in sub-section (2), for the words "Government of the National Capital Territory of Delhi", the words "State Government" shall be substituted.

Amendment of section 85.

16. In section 85 of the Delhi Metro Railway Act,-

(1) in sub-section (1), for the words "Government of the National Capital Territory of Delhi", the words "State Government" shall be substituted;

(ii) in sub-section (2), for the words "Government of the National Capital Territory of Delhi in the Delhi Gazette", the words "State Government" shall be substituted.

> T.K. VISWANATHAN, Secretary to the Govt. of India.

FRINTED BY THE GENERAL MANAGER, GOVT OF INDIA PRESS, MINTO ROAD, NEW DELRE AND PUBLISHED BY THE CONDICILER OF PUBLICATIONS, DELH, 2009

GMGIPMRND-3842GI(S5)-28-8-2009

CONCLUSIONS

Chapter - 22

CONCLUSIONS

- 22.1 Nagpur Municipal Corporation (NMC) had awarded the project titled "Preparation of Master Plan/Perspective Plan for Transportation System of Nagpur City 2031" to L&T-Ramboll Consulting Engineers Limited in June 2007. The study aimed to update the long-term transportation strategy for NMC and identify a practicable and effective investment programme up to 2031. Consultants commenced the study in the month of June,2007 and completed in June,2008. L&T Ramboll Consulting Engineers Limited had carried out the Comprehensive Traffic and Transportation Study and prepared Transportation Master Plan for Nagpur city commissioned by NMC. In their report, L&T-Ramboll recommended the under mentioned Metro Corridors :
 - Alignment-1 : Pardi Naka to Dahegoan (24.54 km with 25 Stations).
 - Alignment-2: Automotive Square to Dahegoan (23.94 km with 24 Stations)
 - Alignment-3 : Transport Plaza to Dahegoan predominantly on NH-7 (27.2 km with 26 Stations)
 - Alignment-4: Transport Plaza to Dahegoan partially on NH-7 (24.2 km with 24 Stations).

DMRC however found that the corridors recommended by L&T-Ramboll were not required in totality but some portions were kept as part of earlier recommended Metro Corridors proposed in Detailed Project Report submitted in July-2013. The corridors recommended in July DPR were namely :

1) North-South Corridor(21.833 km), 2) East-West Corridor (18.266 km)

22.2 FURTHER DEVELOPMENTS

On 03.08.2013, a meeting presided by Shri S K Lohia, JS-MoUD,GoI was held at Nagpur to discuss the DPR. In that meeting, JS-MoUD,GoI expressed that the FIRR of the project

should be at least 8%. Recently, MoUD has also issued advisory that FIRR of Metro Project should not be below 8%.

On 1.10.2013, a presentation on the DPR was made by M/s NIT to The Chief Minister, Government of Maharashtra. He was of the opinion to avoid underground alignment in MIHAN and also construct Maintenance Depot in the land belonging to State Govt Land. Subsequently, on 21.10.2013, a joint inspection of the NS corridor was done by VC&MD-MADC, Chairman-NIT, and Director Business Development-DMRC.

The original alignment of Corridor-I proposed was passing through Khamla Road, Airport Area after Sahakar Nagar and finally was ending at MIHAN. The alignment up to Old Airport Station was elevated, then for a length of 3.30 km, it was underground with one underground station named as New Airport Station and again elevated in MIHAN Area. Since the cost of underground section of the alignment is much more than the elevated section or the section at grade, alternative alignment was suggested for cost reduction, enhancement in PHPDT and to increase FIRR so that project becomes financially and economically viable.

The new proposed alignment suggested in the above inspection, was to pass through a 24m wide road adjacent to London Street after Sehkar Nagar Junction and was proposed to be taken to the east along 24m wide road and London Street up to Wardha Road. From the intersection at Wardha road, the elevated alignment was proposed to be on the central divider on the Wardha Road. After crossing existing intersection point of Wardha Road & Airport Road, the alignment was to be shifted to the MIHAN area. Alignment in this portion was proposed to be at grade and to run parallel to Wardha road upto ROB and abuting railway line thereafter up-to proposed Car depot.

But, while working on this modification of alignment, it was noticed that a very large number of properties were falling along the alignment due to sharp curve at the junction of Sahakar Nagar & 24 m wide road and also at the junction of 24m wide road & Wardha Road. Acquiring of these properties will be very tough and may delay the whole project.

Hence to avoid all such situation, it has been decided to take the alignment on Wardha Road only without going on Khamla Road.

Finally, NS Corridor will pass through Wardha Road after Congress Nagar Metro Station. After crossing existing intersection point of Wardha Road & Airport Road, the alignment will be shifted to the MIHAN area. Alignment in this portion will be at grade and will run parallel to Wardha road upto ROB and parallel to railway line thereafter up-to proposed Car depot. 14m wide stretch of land between the railway boundary line and the road near proposed Container Depot of Container Corporation of India Ltd. will be affected by this proposed alignment of the Metro Rail as the proposed alignment passes through this stretch of land. 73 Ha land is available on the west side of railway line and south of existing flyover near Khapari station. Average width of this land is about 80m and is about 1800m long. This MADC land may be utilized for Car Depot. Similarly, Depot of EW Corridor has also been shifted to SRP Land near proposed Lokmanya Nagar Metro Station.

This has caused deletion of few earlier proposed metro stations on NS Corridor and addition of new stations on the same.

22.3 FINAL ALIGNMENT

Final alignment for both the corridors is as below :

Alignment	Detail Route
Alignment-1 North-South Corridor (19.658 km, 17 Stations)	Automotive Square, along Kamptee Road, Wardha Road, Variety Square to Abhyankar Road, along Nag River alignment will fall on Humpyard Road, Rahate Colony Road, Wardha Road, Parallel to Railway Line, Khapri Station and finally in MIHAN Area near concor depot
Alignment-2 East – West Corridor (18.557 km, 19 Stations)	From Prajapati Nagar, along Central Avenue Road, Railway Feeder Road, Munje Chowk, Jhansi Ranee Chowk, North Ambajhari Road, Hingna Road, Lokmanya Nagar

Table 22.1 FINAL ALIGNMENT

22.4 From the 'Traffic Demand Forecast' it can be seen that peak hour peak direction trips (PHPDT) on the North South Corridor is 10089,1936,12934 and 15729 the year of 2016, 2021, 2031 and 2041 respectively. Similarly PHPDT on East West corridor in the year of 2016, 2021, 2031 and 2041 is 7746, 8460, 9906 and 11882 respectively.

Road-based systems can optimally carry up to a maximum of 8,000 PHPDT. Since the PHPDT arrived on the above corridors exceed 8,000, there can be two options namely 1) Mono Rail and 2) Light Capacity Metro. Mono rail can carry the PHPDT projected but this technology is not a tested one. The operation and maintenance cost is much higher than that of Light metro. The capital cost of Mono rail is also almost same as that of Light Metro. Even in the other countries, the Mono rail is being adopted only for small lengths and as feeder to Metro. Hence, keeping in view the above disadvantages, it is recommended to adopt an stable, tested and reliable Metro technology. However, for Nagpur it will be Light Capacity Metro System.

- **22.5** After examining the various options for execution of Nagpur Metro Rail Project, it is recommended that the project be implemented through government funding through an SPV duly formed namely "NMRC". This SPV will be responsible for implementation and further operation, maintenance of Metro Network. NMRC will also examine the expansion of Metro Network further in the city and nearby urban areas.
- **22.6** Apart from nearby area of Khapri (MIHAN) and Nagpur Airport, Nagpur also has scope for property development as along the corridor. These areas will get boost in development once the implementation of Metro is taken up. The policy of bringing the part increased cost of the land along the corridor to metro project, to be evolved. City Authorities should also create "City Urban Transport Fund" for financing transport related Infrastructure Development.
- **22.7** For successful implementation of any metro project, which by its very nature is highly technical and complex and requires huge capital investment; there should be a political will and commitment. The decision making process has to be fast and the implementing agency must have the required work culture, commitment to targets, commitments to safety, quality and cost consciousness. Any time overrun will have adverse consequences by way of serious cost overruns.
- **22.8** To avoid delays in processing the clearance for the Project, it is suggested that immediately on receipt of the DPR, NIT should take the State Government's approval for the project.
- **22.9** SPV should be set up for Nagpur Metro and registered under the Companies Act, 1956. This SPV should be a PSU of GoM and GoI with its name as NMRC as suggested earlier.
- **22.10** After the approval of State Government, DPR to be sent to the Secretary, Ministry of Urban Development, Government of India, advising GOI of the State Government's intention to take up the Project on government funding basis and requesting for the latter's "In Principle" clearance to go ahead with the Project.
- 22.11 Since NMRC will not have the required expertise to take forward the project, it is recommended that NMRC may engage Interim Consultants after getting in-principle approval of Ministry of Urban Development. Interim Consultants will transfer the alignment on ground, prepare land plans with the help of local authorities and also finalise General Consultants for further implementation of project. To keep a check on the work of the General Consultants and to ensure that the Metro is being constructed to meet the appropriate specifications and safety standards, the SPV may also need to engage the services of Prime Consultants who will keep over-all watch over the execution of the project.

APPROVAL BY GOVT. OF MAHARASHTRA WITH SPV MODAL FUNDING PATTERN (WITH MODIFICATION)

Station Ro	oad, Sadar, Nagpur
No. E.E.(Project) / 1486	Nagpur, Dated: 30/01/20)
То,	
Dear Mr. Sudarshan,	
Executive engineer,	2
DMRC,	100
Subject: Requirement of Copie	es of DPR of Nagpur Metro Rail Project.
This is to inform you t	hat Nagpur Metro Rail project is approved
by cabinet of Government of Mahar	ashtra on 29-01-2014. The fund sharing for
the project approved under SPV mod	del by the state is as per Annexure enclosed.
	e changes in the DPR or enclose this change
	so as per directions of State Government a
	s for Government of India and 5 Copies for
	quired. You are requested to get the same
4278	s to be forwarded to Government of India
within two days.	
Thanking	you.
Enclosure : As above	6 mm)
	Executive Engineer (Project),
	Nagpur Improvement Trust, Nagpur.

APPROVAL BY GOVT. OF MAHARASHTRA

i/ii

Particulars	With Taxes	& Duties
Fatticulars	Amount (Rs/Grore)	% of contribution
Equity by GOI	1736.00	20%
Equity by GOM	1736.00	20%
Nagpur Improvement Trust Contribution	434.00	5%
Nagpur Municipal Corporation Contribution	434.00	5%
JICA Loan @ 1.40% PA/Market Borrowing @12%	4340.00	50%
Total	8680.00	100.00%
3		

SPV MODAL FUNDING PATTERN (WITH MODIFICATION)